

Courtenay Pump Station 750/820-Millimetre Force Main

Condition Assessment Report

DRAFT

Report Prepared for:

Comox Valley Regional District

By:

Pure Technologies Ltd. September 2017

Mississauga, ON | Unit #7, 5055 Satellite Drive | Mississauga, ON, Canada L4W 5K7 | Tel: +1 (905) 624-1040 | puretechltd.com

Courtenay Pump Station

750/820-mm Force Main

Condition Assessment Report

DRAFT

Prepared for

Comox Valley Regional District

Prepared by Pure Technologies Ltd.

September 2017

Quality Assurance and Quality Control Statement

By my signature, I attest that this report has been prepared and reviewed in accordance with the Pure Technologies Ltd. Quality Assurance and Quality Control procedures:

September 8, 2017

Vasilis Sagiannos, Project Manager

Date

NOTICE

This report contains confidential commercial information regarding proprietary equipment, methods, and data analysis, which is the property of Pure Technologies Ltd. It is for the sole use of Comox Valley Regional District and its engineering consultants and is not to be distributed to third parties without the express written consent of Pure Technologies Ltd.

Table of Contents

1.	Executive Summary	
2.	Project Background 2.1 Description of Pipeline 2.2 Project Scope 2.3 Overview of PCCP 2.4 Overview of BWP	7 8 9
3.	Inspection Methodology and Results 3.1 SmartBall Acoustic Inspection Results 3.1.1 Introduction 3.1.2 Acoustic Inspection Results 3.2 Stepsore Selectromagnetic Inspection Results 3.2.1 Introduction 3.2.2 Comparison and Correlation to the Pipe Laying Schedule 3.2.3 Electromagnetic Inspection Results 3.3 Pressure Monitoring and Hydraulic Analysis 3.3.1 Methodology 3.3.2 Results	12 12 14 16 16 17 17 19 19
4.	Structural Analysis 4.1 AWWA C301 Structural Analysis 4.1.1 Design Specifications and Assumptions for Modeling 4.1.2 AWWA C301 Analysis 4.1.3 AWWA C304 Analysis 4.1.4 Finite Element Analysis 4.2 AWWA C303 Structural Analysis 4.2.1 Design Specifications and Assumptions for Modeling 4.2.2 AWWA C303 Analysis 4.2.3 Finite Element Analysis (FEA)	27 27 28 31 32 37 37 38
5.	Analysis and Discussion	43
6.	Conclusions and Recommendations	44 45
Ket	erences	40

APPENDICES

Appendix A – History of PC	CCP
----------------------------	-----

Appendix B – AWWA C301/C304/C303 Results

- Appendix C FEA Methodology
- Appendix D FEA Curves
- Appendix E Pipe List

1. Executive Summary

The Comox Valley Regional District (CVRD) retained the services of Pure Technologies to perform a condition assessment inspection consisting of a SmartBall[™] leak detection survey, a PipeDiver[™] electromagnetic inspection, and transient pressure monitoring on the Courtenay Pump Station 750/820-millimetre Force Main (CPS Force Main). The force main was installed in the early 1980's and spans a distance of 8.80 kilometers, servicing the communities of Courtenay and Comox, BC. The inspected portion of the CPS Force Main is composed of 750-millimetre lined cylinder pipe (LCP) and 820-millimetre bar wrapped pipe (BWP).

Acoustic data was collected on May 2, and May 4, 2017 for the CPS Force Main. The inspection was completed in two (2) runs, as the SmartBall tool was launched from the CPS and Jane Place Pump Station (JPPS) and extracted at the CVWPCC on both occasions. The inspected section spanned a total distance of 8.80 kilometres. Analysis of the acoustic data collected during the inspections identified zero (0) acoustic events characteristic of leaks, one (1) acoustic anomaly characteristic of pockets of trapped transient gas, five (5) acoustic anomalies characteristic of transient gas and two (2) acoustic anomalies characteristic of entrained air, all within the 750-mm LCP section. No acoustic anomalies were identified within the 820-mm BWP section.

Electromagnetic data was collected on May 3, 2017 for the CPS Force Main. The inspected section spanned an overall distance of 8.80 kilometres. Of the 1,258 pipes inspected in the CPS Force Main, no pipes had electromagnetic anomalies consistent with broken prestressing wire wraps or broken bar wraps. However, eight (8) pipes were identified with anomalous signals. The signal shift identified in the anomalous pipes is different from both a standard non-distressed pipe and a pipe with broken wire wraps. The signal shift could be caused by a change in pipe property. Anomalous Pipe 1099 corresponds to a spot repair, implemented in 2003, due to a small breach that occurred while the exterior of the pipe was being chipped away for inspection associated with cathodic protection work. In regards to the rest anomalous pipes, Pure Technologies requires more information to provide a conclusive evaluation of the electromagnetic signal.

The inspection results are summarized in Table ES. 1.									
	Table ES.1: Inspection Results Summary								
Date	Date Pipeline		Distance	Results					
May 2 to May 4, 2017	CPS Force Main	LCP	4.83 kilometers	No leaks; 1 acoustic anomaly characteristic gas pocket; 5 acoustic anomalies characteristic of slugs; No pipes with broken wire wraps; 3 pipes with anomalous signal not characteristic of broken wire wraps;					
		BWP	3.97 kilometers	No leaks or gas pockets; No pipes with broken bars ¹					
	Jane Place PS Tie-in	BWP	0.1 kilometers	No leaks or gas pockets ²					

The inspection results are summarized in Table ES.1.

¹EM inspection for broken bars conducted for 1.48 kiometers, up to Beech Str. as per project scope

² Jane Place PS Tie was not electromagnetically inspected for broken bars as per project scope September 2017

Pump Station. Pressure data was recorded between May 24, 2017 and June 29, 2017, in order to identify the hydraulic stresses acting on the pipeline. The monitor recorded minimum, average, and maximum pressure readings every 2 minutes, and increased the sampling rate to 20 samples per second when transient events occurred. During the monitoring period, the sensor recorded an average pressure of 31.8 psi, with a maximum pressure of 68.2 psi. Transient pressure events were detected during the monitoring period which coincide with pump operation on and off. This is consistent with the normal diurnal operation of a typical wastewater force main.

The data collected from both the inspections and monitoring was used to complete a structural evaluation of the force main, to provide CVRD with actionable information regarding any necessary repairs or rehabilitation. The assessment of the structural condition of the distressed pipes involved a three-dimensional, nonlinear finite element analysis (FEA). A performance curve was developed for each distressed pipe class to evaluate the pipe's ability to perform under the design pressures of the pipeline, given the estimated number of broken wire wraps. No pipes were identified to exceed the FEA Limits in the inspected portion of CPS Force Main.

The CPS Force Main has no electromagnetic distress, while the industry average that Pure Technologies has observed in other PCCP lines is four percent (4%). This distress rate is in regards to the quantity of pipes showing evidence of prestressing wire wrap damage and does not directly portray the extent of the damage within individual PCCPs. Furthermore, AWWA failure statistics [15] for PCCP from the same era (1979-1991) as the CPS Force Main, indicate that approximately 0.55 percent of pipe sticks are anticipated to display significant deterioration or structural weakness.

In summary, for the 2017 condition assessment evaluation of the CPS Force Main, Pure Technologies concludes that:

- One (1) acoustic anomaly characteristic of pockets of trapped transient gas, five (5) acoustic anomalies characteristic of transient gas and two (2) acoustic anomalies characteristic of entrained air were identified within the 750-mm LCP section.
- No acoustic anomalies were identified within the 450-mm and the 820-mm sections of the force main during the SmartBall inspection.
- Of the 1,258 pipes inspected in the CPS Force Main, no pipes had electromagnetic anomalies consistent with broken prestressing wire wraps or broken bar wraps.
- The electromagnetic analysis of the 750-mm LCP identified eight (8) pipes with anomalous signals. The signal shift identified in the anomalous pipes is different from both a standard non-distressed pipe and a pipe with broken wire wraps. The signal shift could be caused by a change in pipe property. Anomalous Pipe 1099 corresponds to a spot repair, implemented in 2003. In regards to the rest anomalous pipes, Pure Technologies requires more information to provide a conclusive evaluation of the electromagnetic signal.

- A transient pressure monitor was installed on the header of the force main at the Courtenay Pump Station. Pressure data was recorded between May 24, 2017 and June 29, 2017, in order to identify the hydraulic stresses acting on the pipeline. During the monitoring period, the sensor recorded an average pressure of 31.8 psi, with a maximum pressure of 68.2 psi.
- Based on the results of the AWWA C301 analysis, the pipe design for 750-mm LCP satisfied the criteria for the current design pressure and earth cover. However, the pipe design at 2- and 4-feet of earth cover and a design working pressure of 108 psi did not satisfy the AWWA C304 design criteria. Two (2) Serviceability Limiting Criteria were not satisfied (i.e., the calculated value exceeded the limiting value). The pipes created using this design are not expected to fail; rather, the pipes should be considered under-designed by the current standard, based on the earth cover and pressure (68 psi) used in the analysis. Although the 750-mm LCP design does not meet the design standard, the values are within 5 percent of passing.
- Based on the results of the AWWA C303 analysis, the pipe design for the 820-mm BWP, Class 100 satisfied the criteria for the current design pressure and earth cover.
- No pipes on the CPS Force Main were identified to exceed any of the Micro Cracking, Visible Cracking, Yield, or Strength Limits based on the finite element analysis.

Recommendations

Based on the results of the internal inspection and subsequent condition assessment of the CPS Force Main Pure Technologies' recommends the following:

- In order to address acoustic anomalies characteristic of static air pockets and transient gas, verify operation of all the air valves on the pipeline.
- In order to detect any new distress on the CPS Force Main, Pure Technologies recommends reinspecting the pipeline in seven (7) years.
- The CPS Force Main has no damaged pipes at this time as detected by the electromagnetic assessment. However, the rate of wire break activity can vary significantly depending on a number of variables. As a result, and since the CPS Force Main is a critical asset with a high consequence of failure, it is recommended that CVRD implement procedures to proactively manage the transmission main system via acoustic monitoring. An acoustic monitoring system will detect and report wire breaks as they occur in near real time. This information is combined with the electromagnetic inspection data to allow CVRD to analyze the condition of the CPS Force Main (i.e., the number of broken wire wraps on each pipe section). This is the best available and most economical option to minimize the risk of future pipeline failure when combined with proactive rehabilitations.

2. Project Background

The Comox Valley Regional District (CVRD) owns and operates a major raw wastewater pump station and 8.80-km of force main that service the communities of Courtenay and Comox, BC.

CVRD retained the services of Pure Technologies to perform a condition assessment inspection, consisting of a SmartBall[™] leak detection survey, a PipeDiver[™] electromagnetic inspection, and transient pressure monitoring on the Courtenay Pump Station 750/820-millimetre Force Main.

2.1 Description of Pipeline

The inspected portion of the Courtenay Pump Station Force Main is composed of 750-millimetre lined cylinder pipe (LCP) and 820-millimetre bar wrapped pipe (BWP). The pipes were manufactured by Canron Inc. Pipe Division in 1982 and the 750/820-Millimetre Courtenay Pump Station Force Main is owned and operated by the CVRD.

The CPS Force Main consists of two sections:

- The CPS to Goose Spit section, and
- The Goose Spit to CVWPCC section (also known as the Willemar Bluffs section).

The CPS to Goose Spit section consists of an "on-land" buried section along the Comox Road alignment from CPS to the foreshore adjacent to Bayside Road, and an "intertidal" foreshore section from Bayside Road to Goose Spit. The force main pipeline exiting the CPS is 750-mm and consists of prestressed concrete cylinder pipe (PCCP), LCP type. At location 4+808 the Jane Place Pump Station discharges into the force main at location via a 450-mm pipeline, consisting of BWP, the 450-mm force main is not included in the scope of this project. Downstream of the JPPS connection, the pipeline is 820-mm and also consists of BWP. The Willemar Bluffs "intertidal" section consists of a 2.1-km foreshore section from Goose Spit to Curtis Road, followed by a short "on-land' section from the foreshore at Curtis Road to the CVWPCC.

No failures have been reported on the force main. However, on September 5, 2003 a leak occurred while Uplands Excavating were exposing a pipe joint, in order to provide a bonded connection between the pipe joints for electrical continuity for an impressed current cathodic protection system. The leak was chainage station 0+066 (cumulative station numbers from Goose Spit Valve Chamber is 1+210). The hole was approximately 25-mm in diameter, at the crown of the pipe and was repaired with a patch consisting of geotextile cloth and a wooden stake plug.

A map of the inspected section of the CPS Force Main is shown below (*Figure 2.1*). This map shows the approximate geographical location of the pipeline.

Figure 2.1: Inspection Limits

2.2 Project Scope

The scope of this report includes an assessment of the Courtenay Pump Station 750/820-Millimeter Force Main in order to provide an effective pipeline management strategy for Comox Valley Regional District. The assessment utilized the following investigative techniques:

- SmartBall leak and gas pocket detection survey
- PipeDiver electromagnetic inspection
- Transient pressure monitoring
- American Water Works Association (AWWA) C301/C304 risk of failure evaluation
- AWWA C303 risk of failure evaluation
- Finite element analysis of LCP and BWP

This report details the results of the condition assessment of the CPS Force Main and provides recommendations for the management of the pipelines.

2.3 Overview of PCCP

The subject force main comprises a type of PCCP known as lined cylinder pipe, or LCP. LCP is a complex, composite structure consisting of a concrete core, a steel cylinder, high-strength steel prestressing wire, and a mortar coating. The concrete core and prestressing wire are the main structural components, while the steel cylinder acts primarily as a water barrier. The prestressing wire produces a uniform compressive force on the core that holds the concrete in compression when the pipe is subjected to internal water pressure and external loading. A mortar coating surrounds the prestressing wire, embedding the wraps in an alkaline environment to protect them from external corrosive influences and physical damage. *Figure 2.2* shows a typical LCP cross section.

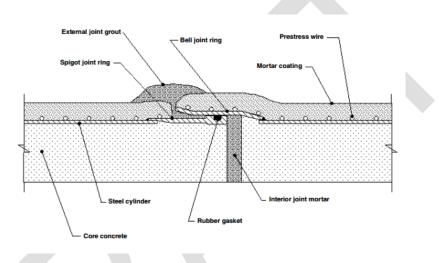


Figure 2.2: Typical LCP Cross Section [2]

PCCP design and manufacturing standards were gradually developed beginning in 1943 and the first tentative consensus standard for PCCP was approved by the AWWA in 1949. The AWWA C301 *Standard Specifications for Reinforced Concrete Water Pipe - Steel Cylinder Type, Prestressed* (AWWA C301-52) was revised multiple times, with the latest revision being released in 2007. The pipes in the subject force main were manufactured in 1982, in accordance with AWWA C301-79 and designed in accordance with AWWA C304-79.

The early structural design requirements for the manufacturing of PCCP tended to be conservative [1, 5, 6], with high factors of safety. As experience with using this composite pipe grew, understanding of the behavior of PCCP increased, and advances in material sciences were achieved, the structural design and manufacturing processes for PCCP were changed to facilitate what appeared to be a more efficient design and cost-effective manufacturing process. Due to the competitive cost of PCCP in comparison to other pipe materials, its popularity grew significantly with water and wastewater utilities in the United States for their large diameter pressure pipelines in the 1960s and 1970s.

As the standards changed and the prestressing wire strength increased, classifications of prestressing wire were developed based on their tensile strength (Class I, Class II, and Class III). September 2017 Page 9 of 53

These practices culminated in the 1970s, when pipes using much more liberal manufacturing standards were introduced.

Beginning in the mid-1980s, PCCP design and manufacturing standards began to improve in response to the large number of failures that occurred in the late 1970s and early 1980s. The major revisions in the standards, design, and manufacturing of the PCCP consisted of changes in the maximum diameter of the PCCP, the quality (strength) of the concrete, the thickness of the steel cylinder, the prestressing wire specifications (e.g., wire diameter, wrapping stress, spacing), and the thickness of the mortar coating [1].

A more detailed overview of PCCP is included in *Appendix A* of this report.

2.4 Overview of BWP

BWP is a semi-rigid pipe that has a composite structure consisting of an inner lining, a steel cylinder, steel reinforcing bar wraps, and an outer coating. The internal pressure in the pipe is resisted by the steel components (steel cylinder and reinforcing bars) while the external loads are resisted by a combination of the stiffness of the composite pipe structure and the force applied by the bedding and backfill. The inner concrete lining and outer mortar coating protect the underlying steel from corrosion. *Figure 2.3* shows the construction and joint of a typical AWWA C303 pipe.

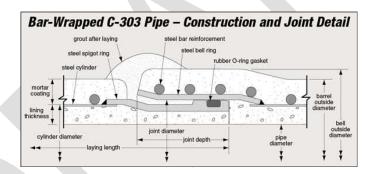


Figure 2.3: AWWA C303 BWP Construction Details

AWWA C303, Concrete Pressure Pipe, Bar-Wrapped, Steel-Cylinder Type, published in 2008, is the current standard that governs the design of BWP. The first edition of AWWA C303 was issued in 1970 and the pipes in the subject force main (manufactured in 1982) were designed in accordance with the 1978 standard.

An AWWA C303 analysis evaluates two (2) criteria to determine if a design is adequate for the analyzed loading conditions:

 <u>Circumferential Stress in the Steel</u>: Internal pressure causes circumferential stress (also known as hoop stress) to be developed in the pipe wall. In BWP, these loads are carried by the steel components of the pipe and the level of stress is limited to a percentage of the yield strength of the steel.

• <u>Deflection</u>: Because BWP is semi-rigid, it does deflect under external loading. The horizontal deflection of the pipe is limited to prevent cracking of the inner lining and outer coating.

A more detailed overview of BWP is included in *Appendix A* of this report.

TECHNOLOGIES

3. Inspection Methodology and Results

3.1 SmartBall Acoustic Inspection Results

3.1.1 Introduction

Acoustic data was collected on May 2, and May 4, 2017 for the CPS Force Main. The inspection was completed in two (2) runs, as the SmartBall tool was launched from the CPS and Jane Place Pump Station (JPPS) and extracted at the CVWPCC on both occasions. The inspected section spanned a total distance of 8.80 kilometres. The SmartBall tool ran out of battery shortly after passing the JPPS connection, therefore the remaining distance was inspected during the second run, with the launch taking place from the JPPS. Below are Pure Technologies' resources used to perform the inspection, as well as the inspection schedule (*Table 3.1.1*).

Table 3.1.1: Inspection Summary									
On-Site Staff	A. Bernal, A. Yapp, J. Buntag, S. CAstro, V. Sagiannos								
Analysts		Andrew Mok, O. Ojala							
Project Manager	V. Sagiannos								
Tool		SmartB	all™						
Date	Pipeline	Diameter (millimeters)	Start Station	End Station	Distance				
May 2 & May 4,		750 & 820	NA	0+735	4.83 kilometres				
2017									
	8.80 kilometres								

Analysis of the acoustic data collected during the inspections identified zero (0) acoustic events characteristic of leaks, one (1) acoustic anomaly characteristic of pockets of trapped transient gas, five (5) acoustic anomalies characteristic of transient gas and two (2) acoustic anomalies characteristic of entrained air within the 750-mm PCCP section. Transient gas consists of entrained air or gas slugs moving through the pipeline, while gas pockets are classified as trapped gas. The results of the CPS Force Main 750-mm pipeline section inspection are summarized in *Table 3.1.2*.

Table 3.1.2: CPS Force Main SmartBall Inspection Results – Run 1					
Acoustic Anomalies Characteristic of Leaks:	0				
Acoustic Anomalies Characteristic of Static Air/Trapped Gas Events:	1				
Acoustic Anomalies Characteristic of Pockets of Transient Gas:	5				
Acoustic Anomalies Characteristic of Static Air/Trapped Gas Events:	2				
Duration of the Inspection:	9 hours, 10 minutes				
Average SmartBall Tool Velocity:	0.2 m/s				

No acoustic anomalies were identified within the 450-mm and 820-mm force main during the inspection. The inspection summary for this section is presented in *Table 3.1.3*.

Table 3.3: CPS Force Main SmartBall Inspection Results – Run 2					
Acoustic Anomalies Characteristic of Leaks:	0				
Acoustic Anomalies Characteristic of Static Air/Trapped Gas Events:	0				
Acoustic Anomalies Characteristic of Pockets of Transient Gas:	0				
Acoustic Anomalies Characteristic of Static Air/Trapped Gas Events:	0				
Duration of the Inspection:	5 hours, 56 minutes				
Average SmartBall Tool Velocity:	0.2 m/s				

The inspection route for the CPS Force Main is displayed on the aerial photograph in *Figure 3.1.1*. The geographical locations of the acoustic anomaly characteristic of trapped and the acoustic anomalies characteristic of transient gas on the 750-mm pipeline are also displayed on the map.

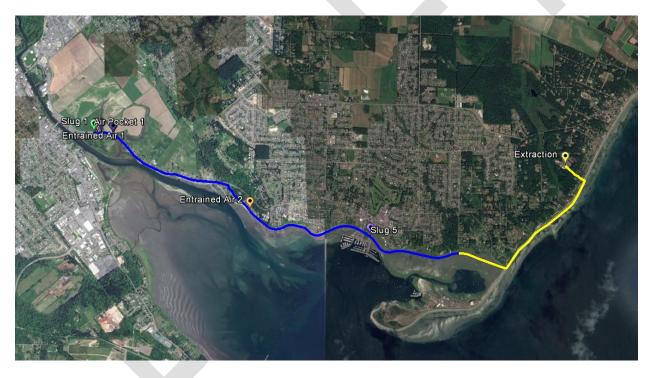


Figure 3.1.1: Layout of the Courtenay Pump Station Force Main

3.1.2 Acoustic Inspection Results

Analysis of the acoustic data collected during the inspection identified zero (0) acoustic events characteristic of leaks, one (1) acoustic anomaly characteristic of pockets of trapped transient gas, five (5) acoustic anomalies characteristic of transient gas and two (2) acoustic anomalies characteristic of entrained air within the 750-mm PCCP section. The acoustic data recorded by the SmartBall tool during the inspection was analyzed and cross-referenced with the position data from each SBR to determine a location for the acoustic anomaly. No acoustic anomalies were identified within the 450- and 820-mm sections of the pipeline during the inspection.

A summary of the findings identified during the SmartBall inspection of the 750-mm section is provided in *Table 3.1.4.*

	Table 3.	1.4: Summary o	of Air Events
Description	Distance from Insertion (Start of Pocket)	Distance from Insertion (End of Pocket)	Comments
Air Pocket (~5m long)	3m	7m	
Slug (~7m long)	31m	38m	
Entrained Air (~38m long)	39m	77m	Air events located in proximity of Insertion point – likely related to tool insertion
Slug (~2m long)	112m	114m	procedures.
Slug (~2m long)	289m	291m	
Slug (~1m long)	294m	295m	
Entrained Air (~2m long)	2,661m	2,663m	Small entrained air event before brief tool stoppage.
Slug (~1m long)	4,607m	4,608m	Slug overlaps SBR 7 location

Figure 3.1.2 shows the acoustic profile of the CPS Force Main inspection with respect to the position of the tool within pipeline, as detected by the SmartBall leak detection technology on the 750-mm section of the pipeline (Run 1). The magnitude of the transient gas pocket is estimated by correlating the value of the acoustic signal with historical calibration data.

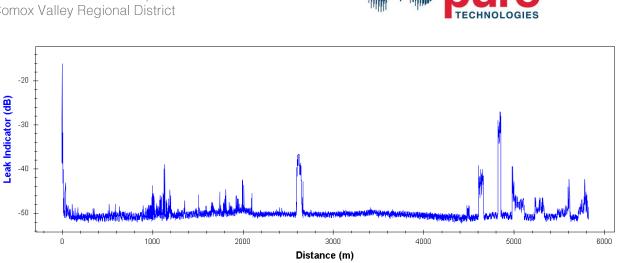


Figure 3.1.2: Acoustic Summary of the SmartBall inspection versus Distance Traveled for the 750mm Section of the Pipeline – Run1

Figure 3.1.3 shows the acoustic profile of the 450- and 820-mm section of the pipeline (Run 2) inspection with respect to the position of the tool within pipeline, as detected by the SmartBall leak detection technology. No leaks or air events were found on this portion of the CPS Force Main.

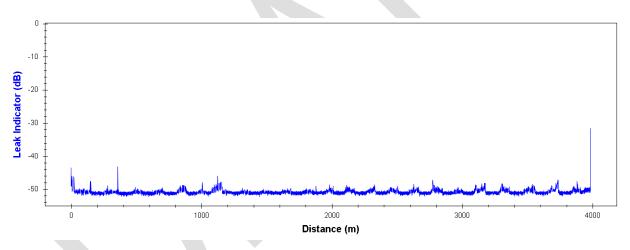


Figure 3.1.2: Acoustic Summary of the SmartBall Inspection versus Distance Traveled for the 450and 820-mm Sections of the Pipeline – Run 2

It is important to note that these overviews may contain anomalous spikes in the data. These spikes may have been caused by ambient noise around the pipeline from external sources such as pumps or nearby traffic. These sources of ambient noise are easily distinguishable from leaks or other points of interest upon further analysis by trained personnel. Ambient noise generally occurs at a much lower frequency than the frequencies generated by a leak or pockets of trapped gas.

3.2 Electromagnetic Inspection Results

3.2.1 Introduction

Electromagnetic data was collected on May 3, 2017 for the 750/820-Millimetre Courtenay Pump Station Force Main. The inspected section spanned an overall distance of 8.80 kilometres.¹ Below are Pure Technologies' resources used to perform the inspection, as well as the inspection schedule (Table 3.2.1).

Table 3.2.1: Inspection Summary									
On-Site Staff	A. B	A. Bernal, J. Buntag, S. Castro, J. Hebner, V. Sagiannos, A. Yap							
Analysts			J. Suryadi,	N. Bose, L.V	/u				
Project Manager			V. Sa	agiannos					
Tool		PipeDiver™							
Date	DiameterPipe ContractStartEnd(millimetres)TypeContractStation								
	750	LCP	S 5	N/A*	0+735	4.83 kilometres			
May 2, 2017	820			2017	BWP	S5	0+735	0+457	1.90 kilometres
May 3, 2017		DVVP	S7	0+457	0+295	2.02 kilometres			
		Unknown	S6	0+295	N/A*	0.05 kilometres			
	Total Distance 8.80 kilometres								

* Station number is not provided due to unavailability of pipeline drawings.

A summary of the total number of pipes that had electromagnetic signatures consistent with broken prestressing wire wraps or broken bar wraps is shown below (Table 3.2.2).

Table 3.2.2: Summary of Inspected Pipes								
Pipeline	Contract	Diameter (millimetres)	Length (metres)	Number of Inspected Pipes	Pipes with Broken Wire or Bar Wraps	Anomalous Pipes		
	S5	750	4,830	690	0	3		
Courtenay Pump Station	S5		1,900	262	0	0		
Force Main	S7	820	2,021	298	0	5		
	S6		53	8	0	0		
	Total		8,803	1,258	0	8		

Anomalous Pipes are pipes identified with electromagnetic signals that are different from a typical distress signal.

¹ All reported distance is based on pipe laying lengths, and accounts for station equations, correlation differences and unavailability of pipe laying schedules and plan and profile drawings.

3.2.2 Comparison and Correlation to the Pipe Laying Schedule

The Comox Valley Regional District provided Pure Technologies with the pipe laying schedules and plan and profile drawings for most of the inspected portions of the CPS Force Main. The stationing used in this report was obtained from the pipe laying schedules, where available. Where pipe laying schedules were not available, the pipe lengths and stationing were not reported.

A few differences were noted in the provided pipe laying schedules and the collected data for the CPS Force Main. These differences included either a pipe observed in the data that was not listed in the pipe laying schedules or vice versa, or variations in the pipe length or layout from what is stated in the pipe laying schedules. Due to these differences and for clarity in reporting, Pure Technologies created a Pipe List. The Pipe List is attached to this report as a spreadsheet and includes information that can be used to locate specific pipes.

3.2.3 Electromagnetic Inspection Results

Of the 895 pipes inspected in the subject force main, no pipes had electromagnetic anomalies consistent with broken prestressing wire wraps or broken bar wraps.

3.2.3.1 Anomalous Pipes

The electromagnetic analysis of the 750-mm LCP identified eight (8) pipes with anomalous signals (*Table 3.2.3 and Table 3.2.4*). The signal shift identified in the anomalous pipes is different from both a standard non-distressed pipe and a pipe with broken wire wraps. The signal shift could be caused by a change in pipe property. Anomalous Pipe 1099 aligns with a spot repair, implemented in 2003, due to a small breach that occurred while the exterior of the pipe was being chipped away for inspection associated with cathodic protection work. In regards to the rest anomalous pipes, Pure Technologies requires more information to provide a conclusive evaluation of the electromagnetic signal.

Table 3.3: Anomalous Pipes in the 750-Millimetre Courtenay Pump Station Force Main							
Pure Reference Number	Pipe Type	Piece Number	Low Station	Pipe Length (metres)	Pipe Class	Signal Positional Range (metres)	
21	LCP	STD	0+089	7.3	10	3.3-7.3	
26	LCP	STD	0+126	7.3	10	4.6-7.3	
178	LCP	STD	0+531	7.3	10	0.0-2.5	

Signal Positional Range - represents the portion of the pipe affected by the anomalous signal. Signal position is measured from low station (metres).

Та	Table 3.2.4: Anomalous Pipes in the 820-Millimetre CPS Force Main									
Pure Reference Number	Ріре Туре	Piece Number	Low Station	Pipe Length (metres)	Pipe Class	Signal Positional Range (metres)				
1081	BWP	STD	0+587	7.3	100	4.0-7.3				
1099 ¹	BWP	STD	0+066	7.3	100	3.9-7.3				
1126	BWP	STD	0+264	7.3	100	4.8-7.3				
1160	BWP	STD	0+506	7.3	100	0.0-2.8				
1164	BWP	STD	0+532	7.3	100	4.2-7.3				

Signal Positional Range - represents the portion of the pipe affected by the anomalous signal. Signal position is measured from low station (metres).

¹Anomalous signal corresponds to 2003 spot repair

3.3 Pressure Monitoring and Hydraulic Analysis

3.3.1 Methodology

A Hydraulic Evaluation is conducted in order to understand the operational and surge pressures within a pipeline. When pipe wall degradation is combined with surge pressures, the likelihood of pipe failure can be significantly increased. Evaluation of the pump station operation, such as pump startup mode, typical and peak flows, operating and surge pressures, and surge protection, can provide important information on the stresses imparted on the pipeline.

Hydraulic pressure transients occur in pipelines when the steady-state conditions of the system change due to pressure and/or flow disturbances (e.g., the rapid closure of a valve, pump startup/shutdown, gas pockets). The magnitude of a transient is related to several factors including the flow rate within the pipeline, the time (how fast) in which the change in steady-state condition occurs, and pipe hoop rigidity. During a transient event, the kinetic energy of the flow momentum is converted into potential energy, a rise in pressure, and strain energy in the pipe walls with the propagation of pressure waves. The resultant pressure transient is superimposed on the existing, steady-state pressure within the pipeline. Gas pockets combined with pressure transients can also have a significant impact on the structural integrity of the pipeline as vacuum conditions may be created. The rapid collapse of these gas pocket vacuum regions may cause cavitation as the transient passes, resulting in mechanical wear on the pipe wall and thereby increasing the risk of failure if the structural capacity has been compromised.

Conventional pressure monitors collect data in intervals of seconds or minutes while transients may occur in fractions of seconds and may be missed by traditional equipment. The LPR-31i pressure monitor, utilized on this project, continuously samples pressure at a high rate and records data every few minutes under normal operating conditions; however, when a transient pressure event is detected in the pipeline, the device records at the high sample rate 20 Hz to provide an accurate recording of the pressure transient event.

3.3.2 Results

A hydraulic evaluation of the subject pipeline was conducted to understand the operational and surge pressures. Pressure data was collected for a total of 36 days, from May 24, 2017 to June 29, 2017, in order to identify the hydraulic stresses acting on the pipeline.

As part of the hydraulic analysis, a LPR-31i was installed on the header that feeds the force main of the Courtenay Pump Station as shown in *Figure 3.3.1*.

Figure 3.3.1 LPR-31i Monitoring Location

Maximum, minimum, and average pressures were recorded by the pressure logger at 2-minute intervals. The maximum pressure recorded during the monitoring period was 68.2 psi, and the minimum pressure recorded was -0.6 psi, with an average pressure of 31.8 psi. A chart of the pressures recorded over the full monitoring period is included in *Figure 3.3.2*. Maximum pressures in a given 2-minute recording interval are plotted along red lines, minimum pressures are plotted along blue lines, and average pressures are plotted along green lines.

The standard deviation of the recorded pressure data is 11.2 psi. Of all the pressure samples recorded, 68.2% are between 19.9 psi and 42.8 psi, and 95.4% are between 8.1 psi and 53.8 psi.

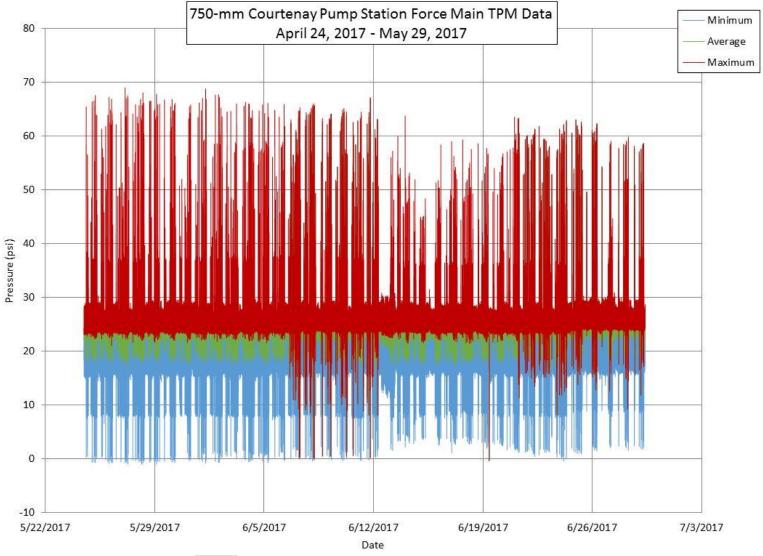


Figure 3.3.2: Pressure Recordings for 750/820-mm Courtenay Pump Station Force Main TPM Data

To translate the recorded pressures from the installation location along the downstream length of the transmission main, basic assumptions about the transmission of the transient pressures were made:

- 1. Observed transient pressures are superimposed on the steady-state pressure at each point along the pipeline.
- 2. The observed transient amplitude (above the background steady-state pressure) is consistent along the length of the pipeline.
- 3. Dynamic losses along the length of the pipeline are neglected; the static elevation pressure differences are assumed to govern and are used in the translation of the recorded pressures.

Hydraulic surge modeling may be performed to refine these assumptions, or additional transient pressure monitoring locations may be selected based on these initial findings if there are areas of particular concern.

The maximum recorded pressure of 68.2 psi occurred on May 27, 2017. Based on the observed system operating pattern, the maximum pressure correlates with a pump shutoff. The transient pressure logger was installed at the Courtenay Pump Station on the header that feeds the force main, where the crown elevation of the pipe is approximately 3 meters below MSL. The low point of the force main is approximately 2.9 meters below MSL. Based on these elevations and the maximum recorded pressure, the maximum pressure in the force main during the monitoring period with normal operations (non-inspection) at the low point would have been approximately 68.2 psi.

The minimum recorded pressure of -0.6 psi was recorded on May 27, 2017 and is associated with pump shutoff. The high point of the force main is 2.6 meters above MSL. Based on the elevations and assumptions stated above, the minimum pressure in the force main during the monitoring period was approximately -8.7 psi.

Significant transient pressure events were detected during the monitoring period which coincide with pump operation on and off. This is consistent with the normal diurnal operation of a typical wastewater force main. A sample week of transient pressure data is shown in *Figure 3.3.3* and a sample day is shown in *Figure 3.3.4*. *Figure 3.3.5* shows the day with both the maximum and minimum pressure event.

Cyclic loading in other pipe materials is well understood to be a mode of failure and is a primary design consideration. It is understood that a component subjected to fluctuating stresses, such as cyclic loading or regularly occurring transients, may fail at stress levels much lower than its fracture strength. Strength reduction due to fatigue is attributed to two primary factors: cycle frequency and amplitude. In the case of pipelines, the recurring amplitude is half the pressure differential and the frequency is the pressure cycle. The less than two pump cycles per hour observed at the Courtenay Pump Station is compliant with industry standards for pump operation. September 2017

These early morning cycles occur per low flow when the flow in is less than the minimum speed of the VFD. Going forward, SCADA should be used to determine the cause of the maximum and minimum pressure events, and additional monitoring at the high point of the line would confirm or deny the existence of damaging negative pressures.

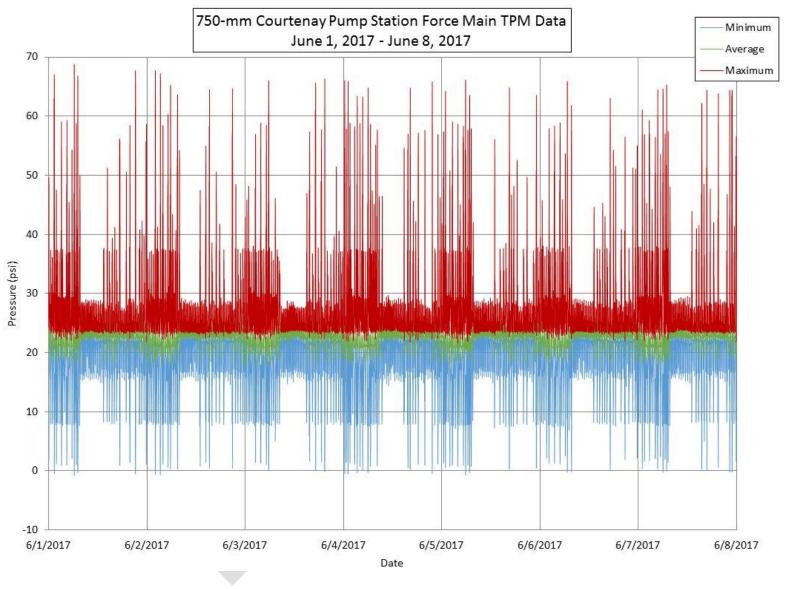


Figure 3.3.3: Pressure Recordings: June 1, 2017 to June 8, 2017

September 2017

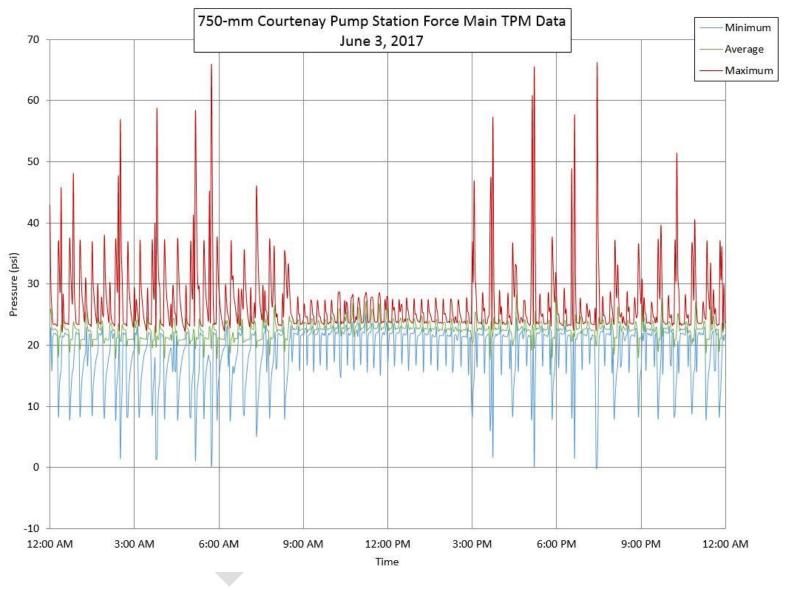


Figure 3.3.4: Pressure Recordings: June 3, 2017

September 2017

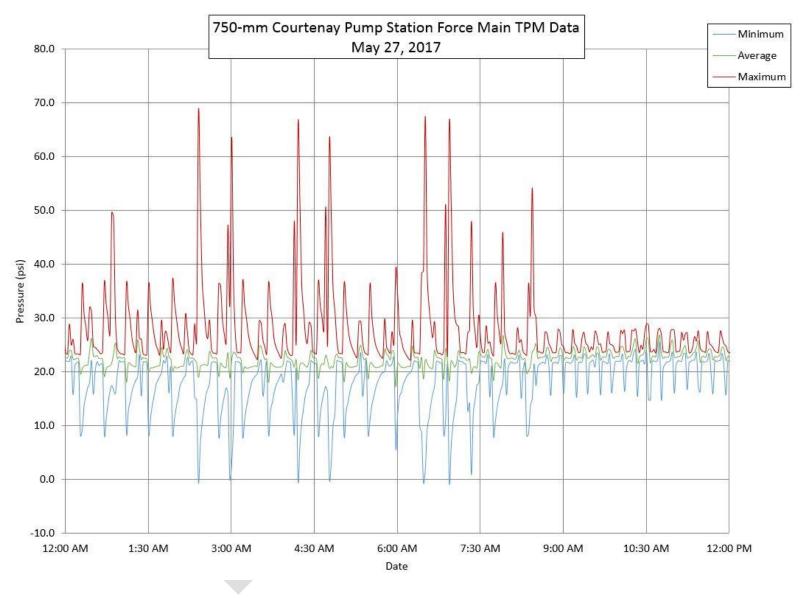


Figure 3.3.5: Pressure Recordings: May 27, 2017 12:00 AM – 12:00 PM

September 2017

4. Structural Analysis

4.1 AWWA C301 Structural Analysis

Pure Technologies performed a structural analysis of the distressed pipes to determine if their PCCP design used in the Courtenay Pump Station 750-mm Force Main satisfies the contemporary and current PCCP design standards. These analyses are detailed in the following sections.

4.1.1 Design Specifications and Assumptions for Modeling

4.1.1.1 Pipe Properties

Table 4.1.1 lists the design specifications used by Pure Technologies for the structural analysis of the LCP design used in the CPS 750-mm LCP section of the force main. The pipe design was evaluated for two (2) separate cases: the on-land section and the intertidal section, as each section is subject to different loading conditions. All values were obtained from the design specification sheets provided by the Comox Valley Regional District and were assessed based on the C301-79 design standard.

Table 4.1.1: Design Specifications						
Pipe Parameters	Units	750-mm On-land Section	750-mm Intertidal Section			
Ріре Туре		L	CP			
Internal diameter of the pipe	inch		30			
Design Operating pressure	psi	1	00			
Earth cover	feet	2*	4*			
Outside diameter of the cylinder	inches	3	5.6			
Thickness of the steel cylinder	inches	0.0)598			
Steel cylinder gage		1	6**			
Thickness of the concrete core	inches	2.74				
Minimum mortar coating thickness	inches		1			
Prestressing wire diameter	inches	0.	162			
Prestressing wire gage		8	8**			
Prestressing wire area	in²/ft	0.	176			
No. of wraps of wire	/ft		15			
Wire wrapping stress	ksi	1	95			
Wire ultimate strength	ksi	2	262			
Prestressing wire class		3				
Steel cylinder yield strength	ksi	27**				
Zero Compression Pressure	psi	127				
Burst Pressure	psi	3	367			

*Earth cover was verified with plan and profile drawings provided by CVRD and tide information **Values unavailable in specifications and obtained via respective AWWA standards

4.1.1.2 External Loading

The external earth load is extremely influential in the AWWA C301 and C304 analysis. For the CPS 750-mm section of the force main, the earth cover depth was determined to be approximately 2 feet for the on-land section, and 1.5 feet of sand plus 2.5 feet of water for the intertidal section. The earth cover was verified from the pipe profile drawings and tide information.

The earth loading assumed a soil unit weight of 120 pounds per cubic foot (lb/ft³) and a Kµ value of 0.165, which is representative of sand and gravel. Kµ is the ratio of the active lateral unit pressure to the vertical unit pressure times the coefficient of friction between the fill material and the sides of the trench. Additionally, an Olander bedding angle of 45 degrees was used for the analysis, indicating a typical installation in sand and gravel.

In order to determine the effect of traffic loading on the pipeline for the inland section, the AASHTO HS-20 truck wheel load was used as the live load condition. An associated live load impact factor was applied to take into account the dynamic nature of the traffic loading [4].

4.1.1.3 Internal Pressure

An important input for the structural evaluation is the actual operating pressure of the pipeline, including working pressure and transient pressures. The structural analysis was performed using the actual operating pressure of 68 psi for the 750-mm LCP. If the operating conditions differ from those used in the structural analyses, the analyses will also change.

To provide a level of conservatism for the analysis, a surge allowance was also considered during the AWWA C304 evaluation. As the actual operating pressures are below 100 psi (high value of 68 psi), a 40-psi surge pressure was considered as part of the structural evaluation. An assumed surge allowance of 40 percent of the operating pressure or 40 psi, whichever is greater, was specified in the AWWA C304 design standard.

Although it in no way reflects actual transients occurring in the pipeline, the addition of 40 psi to the pressure includes a level of conservatism in the analysis that is important because it provides allowances for variances in the operating conditions in the pipeline that cannot be predicted and may not be detected. Note that the actual maximum pressure may be different from those used in this analysis, depending on the system operation and maintenance of the valves.

4.1.2 AWWA C301 Analysis

Pure Technologies evaluated the pipe design utilizing *Appendix A*, "*Cubic Parabola Design Method*" of the 1955 and 1984 AWWA C301 *Standard for Prestressed Concrete Pressure Pipe, Steel-Cylinder Type, For Water and Other Liquids* [3]. The AWWA C301 *Appendix A* design method used a semi-empirical approach for evaluating the strength of a PCCP based on the three-edge bearing test load that causes incipient cracking and the maximum internal design pressure that relieves the residual compression in the concrete core. Analyzing the pipe design using the AWWA C301-79 standard allowed Pure Technologies to evaluate the structural adequacy of the design based on the contemporary standard. The AWWA C301 curve for the

750-mm LCP design at a pressure of 108 psi (actual operating pressure of 68 psi, plus 40 psi surge pressure) and 2 feet of earth cover (on-land section) is shown in *Figure 4.1.1*.

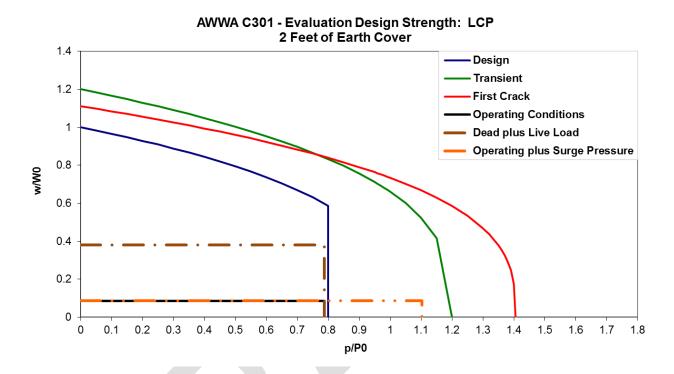


Figure 4.1.2: AWWA C301 Curve for the 750-mm, LCP Design at Design, 2 Feet of Earth Cover, Operating Pressure (100 psi)

The AWWA C301 curve for the 750-mm LCP design at a pressure of 108 psi (actual operating pressure of 68 psi, plus 40 psi surge pressure) and 1.5 feet of earth cover (intertidal section) is shown in *Figure 4.1.2*.

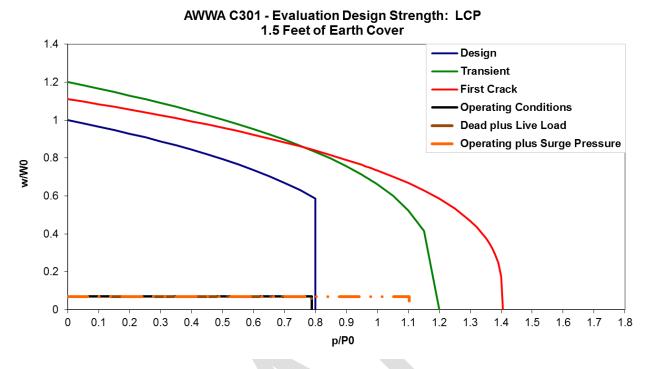


Figure 4.1.2: AWWA C301 Curve for the 750-mm, LCP Design at Design, 1.5 Feet of Earth Cover, Operating Pressure (100 psi)

The AWWA C301 *Appendix A* design method evaluates a particular pipe design using the actual internal pressure and external loading conditions for the pipeline and then compares the calculated values with the Design and Transient Limit curves (blue and green curves, respectively). The y-axis represents the external loading conditions on the pipe. W is the external load considered while W0 is equivalent to 90 percent of the three-edge-bearing load that produces incipient cracking in the concrete core when no internal pressure is applied [3]. The x-axis represents the internal pressure conditions in the pipeline. P is the internal pressure being considered while P0 is the zero compression pressure, which is the threshold between tension and compression in the concrete when the total stress is equal to 0 psi. P0 is independent of any external loading [3].

The black "Operating Conditions" curve is calculated using the dead load on the pipe as W and the internal operating pressure as P. This curve must remain inside of the blue "Design" curve to satisfy the AWWA C301-*Appendix A* Design Standard. The brown "Dead plus Live Load" curve considers the dead and live loads on the pipe as W, while P is taken as the internal operating pressure. The orange "Operating Pressure plus Surge Pressure" curve considers the operating plus a surge allowance as P and uses the dead load on the pipe as W. The AWWA C301-*Appendix A* Design Standard is satisfied when both the brown and orange curves remain inside of the green "Transient" curve.

The red "First Crack" curve is an empirical equation that represents the point when cracking is first expected in a pipe. Based on laboratory testing, the first crack is considered to be 0.001

inches wide and 12 inches long. The pressure and external load associated with this limit are calculated assuming a conservative concrete tensile strength of 300 psi [14]. Because transient loads are not constant, these first cracks would be expected to close once the increased loading is removed. If the brown or orange curves exceed the red curve, cracking could occur in the concrete core; however, the AWWA C301 *Appendix A* Design Standard would still be satisfied as long as the curves remain below the green "Transient" curve.

Using the aforementioned design information, the AWWA C301 analysis for 36-inch SP-5 LCP design was satisfied using the design operating pressure. The AWWA C301 analysis sheets are included in *Appendix B*.

4.1.3 AWWA C304 Analysis

In 1992, the AWWA Committee created a new standard for the design of PCCP called AWWA C304 *Design of Prestressed Concrete Cylinder Pipe* [2]. AWWA C304 is a more rigorous design method than AWWA C301, which was the design standard used by the industry prior to 1992. This report uses the AWWA C304 3rd edition, which was approved in 2007, to evaluate the pipe design. The AWWA C304 Design Standard evaluates stress and strain in undamaged PCCP under several loading combinations and is especially sensitive to the effect of external loading. Pure Technologies analyzed the pipe design using AWWA C304-07 to evaluate its adequacy in relation to the current PCCP design standard.

The AWWA C304 adopted three (3) Limits with criteria that consider multiple load combinations of external loads, pipe and fluid weights, and internal pressures. The three (3) Limits are the Serviceability Limit, the Elastic Limit, and the Strength Limit. The Serviceability Limit is defined by stress and strain criteria that preclude the appearance of both micro cracks and visible cracks in the concrete core and the mortar coating under different loading conditions. This Limit is also controlled by criteria related to the radial tensile stress, the core compressive stress, and the pressure in the pipe. The Elastic Limit is determined by the elastic response of the pipe under operational and operational plus surge pressures. The Elastic Limit controls the amount of stress applied to the prestressing wire and the steel cylinder. The Strength Limit provides a factor of safety for operational and abnormal conditions to protect the pipe against yielding of the prestressing wire or crushing of the concrete core.

Based on the results of the AWWA C304 analysis, at 2- and 4-feet of earth cover and a design working pressure of 108 psi, two (2) Serviceability Limiting Criteria were not satisfied (i.e., the calculated value exceeded the limiting value). The pipes created using this design are not expected to fail; rather, the pipes should be considered under-designed by the current standard, based on the earth cover and pressure used in the analysis. Although the 750-mm LCP design does not meet the design standard, the values are within 5 percent of passing

4.1.4 Finite Element Analysis

Finite Element Analysis is an accurate method for modeling complex geometry under different loading conditions. Recent developments in finite element modeling and increased computational speed allow for the analysis of complex nonlinear problems, which is required to provide accurate models of PCCP with broken prestressing wire wraps.

The FEA model has been developed by Pure Technologies to determine the structural consequence of broken prestressing wire wraps by utilizing pipe design specifications, design parameters, and the current condition of the prestressing wire wraps, as determined during the electromagnetic inspection. During the analysis, the model of a pipe design is subjected to internal pressure, pipe and fluid weights, and external loads while varying the number of broken wire wraps. Commercial finite element analysis software (Abaqus) was used to investigate the response of a PCCP under these different loading conditions.

The FEA model predicts the performance of a PCCP utilizing the tensile strengths of the prestressing wire, the steel cylinder, and the concrete core, as well as a plasticity algorithm that simulates concrete crushing in compression regions. A performance curve, displaying the effects of broken wire wraps, is formulated and used to determine the number of broken wraps required for the design to exceed theoretical Limits. It should be noted that in performing the structural analysis, the pipe properties used in the models were assumed, based on the age and manufacturer of the pipes and standard values provided in the AWWA C301-72 Standard.

A typical LCP is modeled using a composite element with four (4) layers to represent the concrete core, the steel cylinder, the prestressing wire, and the mortar coating. Care was needed to be taken when modeling the prestressing wire wraps and the joint rings to ensure that a realistic behavior for PCCP was achieved. Once the pipe was modeled correctly, all other loads (pipe weight, fluid weight, earth load, live loads, and internal pressure) were applied. *Figure 4.1.3* shows the 3D mesh and composite model used in the analysis of an LCP.

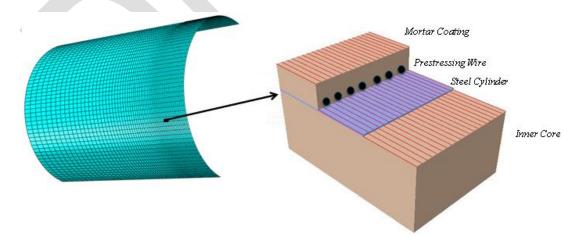


Figure 4.1.3: 3D FEA Representation of an LCP

The FEA was performed for the pipe design at the depth of cover of 5 feet. *Figure 4.1.3* shows the stresses developed in the concrete core, mortar coating, prestressing wire, and steel cylinder during the analysis of a pipe with 25 broken wire wraps. In the figures, the zone of broken wire wraps is located at the far right edge of each image. Stress is measured in the 1-1 direction of the local coordinate system (S_{11}), which is comparable to the hoop stress developed circumferentially around the pipe in the global coordinate system (σ_H). In the figures below, color gradients indicate the calculated range of stress for each element in the FEA model. Positive values for stress, shown as red and orange areas for the concrete core (*Figure 4.1.4* (a)), represent tension. Negative values, shown as yellow, green, and blue areas for the concrete core, indicate compression. In the models, stress is measured in pounds per square inch (psi).

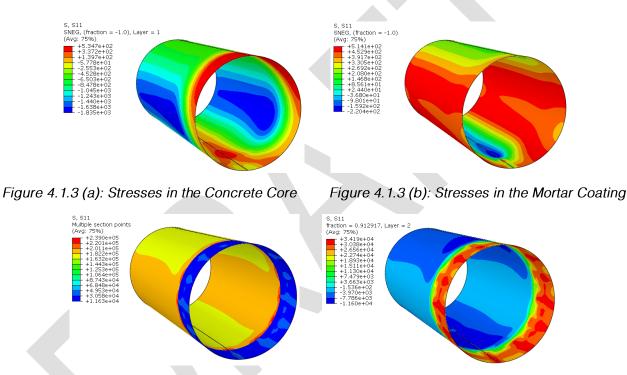
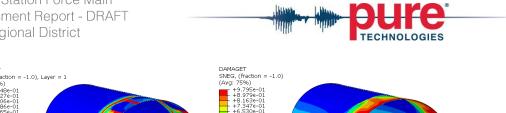



Figure 4.1.3 (c): Stresses in the Prestressing Wire Figure 4.1.3 (d): Stresses in the Steel Cylinder

Cracking in PCCP is due to excessive tension in the concrete core and the mortar coating. *Figure 4.1.4* shows the damage due to tension in the concrete core and mortar coating of a pipe with 25 broken wire wraps. In this figure, the color gradients indicate the probability of visible cracking for each element in the FEA model. Dark blue areas indicate sections of the model where there is a very low probability of visible cracking. By contrast, bright red areas indicate sections of the model where there be model where there is over a 90 percent probability of visible cracking.

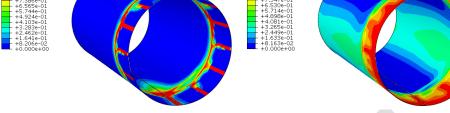


Figure 4.1.4 (a): Damage in the Concrete Core

Figure 4.1.4 (b): Damage in Mortar Coating

2.1.4.1 Performance Curves

The number of broken prestressing wire wraps that a particular pipe design will tolerate under operational and surge conditions can be determined using an FEA performance curve. Pure Technologies uses four (4) Limits, Micro Cracking, Visible Cracking, Yield, and Strength, to classify the condition of a distressed PCCP. Note that although they have similar descriptions and values, these Limits are different than the Limits and Limiting Criteria described in the AWWA C304 analysis.

Table 4.1.2 defines the Limits used by Pure Technologies to describe the predicted condition of a PCCP with a known quantity of broken wire wraps. The actual number of broken wire wraps required to reach these Limits varies according to the pipe design and earth cover.

Table 4.1.2: Predicted Condition of a Pipe with Broken Wire Wraps					
Limit	Description				
Micro Cracking	Micro cracking of the mortar coating or concrete core (defined by the strain associated with a crack that is ≥ 0.001 inches wide)				
Visible Cracking	Visible cracking of the mortar coating or concrete core (defined by the strain associated with a crack that is ≥ 0.002 inches wide)				
Yield	Prestressing wire or steel cylinder reach their yield strength				
Strength	Prestressing wire or steel cylinder reach their ultimate tensile strength				

A pipe reaches the Micro Cracking Limit when strain in the mortar coating or concrete core exceeds the AWWA C304 tensile strain limit for micro cracking. Micro cracking in the mortar coating or concrete core is described as cracks greater than 0.001 inches wide and 12 inches in length and can be considered the preliminary level of damage in a PCCP. The Visible Cracking Limit is reached when the mortar coating or concrete core experience cracks greater than 0.002 inches wide and 12 inches in length.

The values used to represent the performance of the steel components in the field are based on the yield and ultimate strengths provided on the pipe design specifications sheet or the standard values in the relevant design standard, if the pipe is not available. The yield strength for the prestressing wire is typically 85 percent of its ultimate strength, while the yield strength of the steel September 2017 Page 34 of 53

cylinder is either denoted on the pipe design specification sheet or taken from the design standard in place at the time of production. The Yield Limit is reached when either the steel cylinder or the prestressing wire exceed its yield strength. The ultimate strength of the prestressing wire is dictated by the gage and class of the wire, while the ultimate strength of the steel cylinder is determined by the grade of the steel. The Strength Limit is exceeded when one of the PCCP components reaches its ultimate strength, which, theoretically, will cause the failure of the pipe.

By evaluating the predicted structural condition of a pipe using FEA and analyzing all critical variables, a risk assessment for all distressed pipes can be performed to determine if and when a particular pipe should be rehabilitated. An FEA performance curve evaluates the impact of a growing number of broken prestressing wire wraps on the performance of a pipe and the corresponding likelihood of failure as a result of this damage. Failure risk is expressed in terms of the Limits, given in *Table 4.1.2*, as it relates to the capacity of a pipe with broken prestressing wire wraps. FEA curves were created for the 750-mm pipe design at 2- and 1.5-feet of earth cover. Based on this analysis, a plot was generated that shows the Limits in terms of the number of broken wire wraps and the applied internal pressure. A more detailed description of the FEA methodology and limitations is provided in *Appendix C* while the FEA performance curves are provided in *Appendix D*.

Figure 4.1.5 shows the performance curve generated for the 750-mm pipe design at actual operating conditions, considering 2-feet of earth cover and live loads (on-land sections).

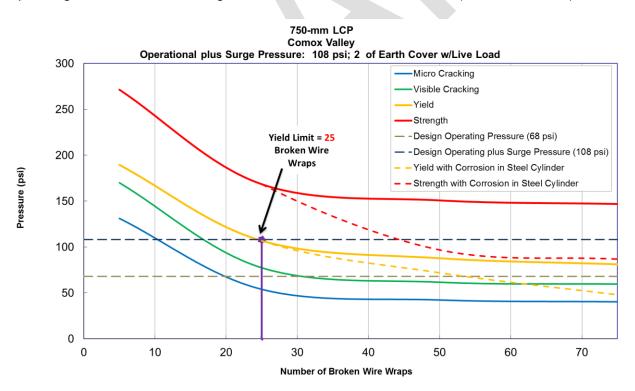


Figure 4.1.5: Performance Curve for the 750-mm LCP in the CPS Force Main, with 2-feet of earth cover and live load (On-land Section)

Figure 4.1.6 shows the performance curve generated for the 750-mm pipe design at actual operating conditions, considering 1.5-feet of earth cover and 2.5-feet of water above due to tide conditions (intertidal section).

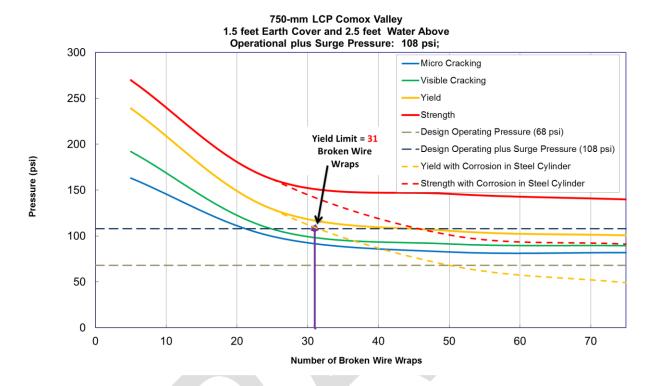


Figure 4.1.5: Performance Curve for the 750-mm LCP in the CPS Force Main, with 1.5-feet of earth cover and 2.5-feet of water above (Intertidal Section)

Table 4.1.3 gives the number of broken prestressing wire wraps required to exceed each Limit at the actual operating pressure plus transient pressure for the analyzed pipe design.

Table 4.1.3: Number of Broken Wire Wraps Required to Exceed Each Limit							
Pipe Section	Analysis Pressure (psi)	Micro Cracking	Visible Cracking	Yield	Strength		
750-mm On-land	108	10	17	25	44		
750-mm Intertidal	108	21	25	31	45		

Pure Technologies typically recommends mitigating the risk associated with operating a particular pipe when the model predicts that the pipe meets or exceeds the Yield Limit. In reality, the Limit that a pipe exceeds is only one factor to consider when deciding whether to rehabilitate a pipe. Other variables that are critical for the CVRD (e.g., redundancy, consequence of failure, and criticality) should be evaluated when determining the risk tolerance associated with a distressed pipe. Once the number of broken wire wraps on a pipe reaches the Yield Limit, a pipe may experience a higher rate of wire breaks until it reaches the Strength Limit. Due to the conservative nature of the FEA, reaching the Strength Limit does not necessarily indicate an immediate failure.

4.2 AWWA C303 Structural Analysis

Pure Technologies performed a structural analysis to determine if the BWP design used in the force main satisfied the requirements of the current American Water Works Association (AWWA) C303 Standard, *Concrete Pressure Pipe, Bar-Wrapped (ASTM) A570 Grade 33, Steel-Cylinder (ASTM) A615 Grade 40.* Pure Technologies also performed a three-dimensional finite element analysis (FEA) to evaluate the structural capacity of pipes with broken bar wraps. These analyses are detailed in the following sections.

4.2.1 Design Specifications and Assumptions for Modeling

4.2.1.1 Pipe Properties

Table 4.2.1 provides the values used to complete the structural analysis for CPS Force Main 820mm BWP design per AWWA 1978 standards. All values used to model the design were obtained from the Ameron pipe design specifications sheet provided by the CVRD.

Table 4.2.1: Values used for FE	A Modeling – St	andard Pipe Designs
Pipe Parameters	Units	820-mm Class 100 BWP
Earth Cover (to top of pipe)	feet	4
Design Pressure	psi	86
Inside Diameter	inches	32.25
Outside Diameter of the Pipe	inches	35.23
Outside Diameter of the Cylinder	inches	33.80
Cylinder Thickness	inches	0.0747
Cylinder Gage	-	14
Inner Mortar Lining Thickness	inches	0.7
Outer Mortar Coating Thickness	inches	0.5
Bar Diameter	inches	0.21875
Center-to-Center Bar Spacing	inches	1.37
Ultimate Strength of the Bars	psi	72,500
Yield Strength of the Cylinder	psi	33,000

4.2.1.2 External Loading

The external earth load is extremely influential in the AWWA C303 analysis and the FEA. Based on the approximate bury depth for the most severely distressed pipe, the earth cover depth considered for the 820-mm BWP design was 1.5 feet of earth cover, plus 2.5 feet of water. The earth cover was verified from the pipe profile drawings and tide information.

The earth loading assumed a soil unit weight of 120 lb/ft³ and a K μ value of 0.165, which is representative of sand and gravel. K μ is the ratio of the active lateral unit pressure to the vertical unit pressure times the coefficient of friction between the fill material and the sides of the trench. A bedding angle of 45 degrees was used for the analysis and Pure Technologies assumed that coarse-grained soil with some fines was the primary bedding material. To analyze the manhole

pipe designs for the worst-case scenario, Pure Technologies also assumed a moderate level of compaction (90-95%) of the bedding material.

4.2.1.3 Internal Pressure

An important input for the structural evaluation is the actual operating pressure of the pipeline, including working pressure and transient pressures. Based on the denoted class of pipe, the actual operating pressure used in the analysis was 68 psi for the 820-mm BWP. If the operating conditions differ from those used in the structural analyses, the analyses will also change.

To provide a level of conservatism for the analysis, a surge allowance was also considered during the AWWA C303 evaluation. As the actual operating pressures are below 100 psi (high value of 68 psi), a 40-psi surge pressure was considered as part of the structural evaluation. An assumed surge allowance of 40 percent of the operating pressure or 40 psi, whichever is greater, was specified in the AWWA C303 design standard.

Although it in no way reflects actual transients occurring in the pipeline, the addition of 40 psi to the pressure includes a level of conservatism in the analysis that is important because it provides allowances for variances in the operating conditions in the pipeline that cannot be predicted and may not be detected. Note that the actual maximum pressure may be different from those used in this analysis, depending on the system operation and maintenance of the valves.

4.2.2 AWWA C303 Analysis

As part of the structural analysis, an AWWA C303 analysis was performed for the 820-mm, Class 100 BWP design that was used for the FEA. *Table 4.2.2* summarizes the results of the AWWA C303 analysis.

Table 4.2.2: Result of the AWWA C303 An	alysis	
Specified Class (Design Pressure, psi)	150	
Working Pressure, psi ¹	1	0
Earth Cover, feet		7
Maximum Allowable Deflection, inches	0.3	324
Horizontal Deflection: Un-cracked, inches	0.043	Satisfied
Horizontal Deflection: Cracked, inches	0.104	Satisfied
Circumferential Stress Limit: Steady State Conditions, psi		00 psi or 50% ield Strength
Circumferential Steel Stress: Working Pressure, psi	862	Satisfied
Circumferential Steel Stress: Design Pressure, psi	12,935	Satisfied
Circumferential Stress Limit: Transient Conditions, psi		00 psi or 75% ield Strength
Circumferential Steel Stress: Working plus Transient Pressure, psi	6,209	Satisfied
Circumferential Steel Stress: Design plus Transient Pressure, psi	18,282	Satisfied

The requirements of the AWWA C303 analysis were satisfied for the 820-mm, Class 100 pipe design at both the actual operating pressure (68 psi) and the design operating pressure (100 psi). The complete result sheet for the AWWA C303 analysis is found in *Appendix A*.

4.2.3 Finite Element Analysis (FEA)

FEA is an accurate method for modeling complex geometry under different loading conditions. Recent developments in finite element modeling and increased computational speed allow for the analysis of complex nonlinear problems, which is required to provide accurate models of BWP with broken bar wraps and corrosion.

The FEA model developed by Pure Technologies determines the structural consequence of broken bar wraps and corrosion by utilizing pipe design specifications, design parameters, and the current condition of the pipes, as determined during the enhanced electromagnetic inspection. In the analysis, the model of a pipe design is subjected to internal pressure, pipe and fluid weights, and external loads while varying the amount of steel available to carry the load. Commercial finite element software (ABAQUS) was used to investigate the response of a BWP under these different loading conditions.

The FEA model predicts the performance of a BWP, utilizing the strengths of the inner lining, the steel cylinder, the reinforcing bar, and the outer coating. A performance curve, displaying the effects of distress, is formulated and used to determine the number of broken bar wraps required for the design to exceed theoretical limits. It should be noted that in performing the structural analysis, the values used in the models were taken directly from the AWWA C303 Design Standard.

A typical BWP is modeled using a composite element with four (4) layers to represent the inner lining, the steel cylinder, the reinforcing bar, and the outer coating. Care was taken when modeling the broken bar wraps and corrosion to ensure that a realistic behavior for BWP was achieved. Once the pipe was modeled correctly, all other loads (pipe weight, fluid weight, earth load, live loads, and internal pressure) were applied. *Figure 4.2.1* shows the 3D mesh and composite model used in the analysis of a BWP (note that the reinforcing bar layer is not visible as it is embedded in the outer coating).

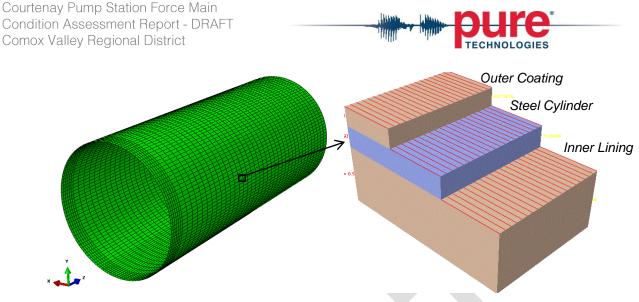
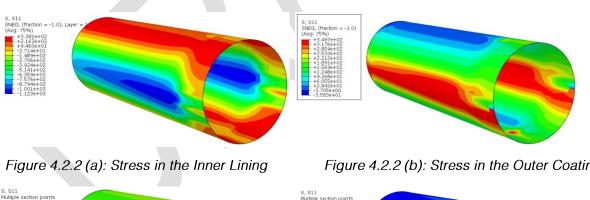



Figure 4.2.1: 3D FEA Representation of a BWP

The FEA was performed for the 820-mm, Class100 BWP design while varying the level of distress in the pipe wall. Figure 4.2.2 shows the hoop stress developed in the inner lining, the outer coating, the reinforcing bar, and the steel cylinder during the analysis of an 820-mm BWP with 20 broken bar wraps and 70% corrosion. In the figures below, color gradients indicate the calculated range of stress for each element in the FEA model. Positive values, shown as red and orange areas for the inner lining (Figure 4.2.2a) represent tension, while negative values, shown as green and blue areas for inner lining, indicate compression. In Figure 4.2.2, stress is reported in pounds per square inch (psi).

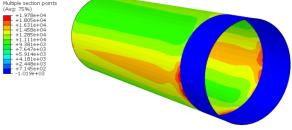
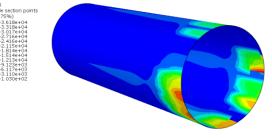
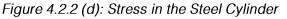




Figure 4.2.2 (c): Stress in the Reinforcing Bar

Figure 4.2.2 (b): Stress in the Outer Coating

4.2.3.1 Performance Curve

The level of distress that a particular pipe design will tolerate under operational and transient conditions can be determined using FEA performance curves. For BWP, Pure Technologies evaluates distress using both deflection performance curves and pressure performance curves.

A pressure performance curve displays the maximum pressure that a distressed pipe design can tolerate before the stress or strain reaches pre-determined limiting values. In this type of performance curve, three (3) Limits, Micro Cracking, Visible Cracking, and Yield, are used to classify the condition of a distressed BWP and determine whether a particular pipe should be rehabilitated. *Table 4.2.3* defines the Limits used to describe the predicted condition of a BWP with a known level of distress. The actual amount of distress required to reach these Limits varies according to the pipe design and earth cover.

Table 4.2.3	: Predicted Condition of a Pipe with Broken Wire Wraps
Limit	Description
Micro Cracking	Micro cracking of the mortar coating or concrete core (defined by the strain associated with a crack that is \geq 0.001 inches wide)
Visible Cracking	Visible cracking of the mortar coating or concrete core (defined by the strain associated with a crack that is \geq 0.002 inches wide)
Yield	Prestressing wire or steel cylinder reach their yield strength

A pipe reaches the Micro Cracking Limit when strain in the outer coating or inner lining indicates cracking that is greater than 0.001 inches wide and 12 inches in length. This Limit is considered the preliminary level of damage in a BWP. The Visible Cracking Limit is reached when the outer coating or inner lining experience cracks greater than 0.002 inches wide and 12 inches in length.

The values used to represent the performance of the steel components in the field are based on the yield strengths provided on the pipe design specifications sheet. The yield strengths provided in the Ameron specifications are references to standard American Society for Testing and Material (ASTM) steel grades. All steel used for the cylinder is ASTM A570 Grade 33, and all steel used for the reinforcing bars is ASTM A615 Grade 40 Smooth. The Yield Limit is reached when either the steel cylinder or the reinforcing bar reaches the yield strength.

By evaluating the predicted structural condition of a pipe using FEA and analyzing all critical variables, a risk assessment for all distressed pipes can be performed to determine if and when a particular pipe should be rehabilitated. An FEA performance curve evaluates the impact of distress on the performance of a pipe and the corresponding likelihood of failure as a result of this damage. Failure risk is expressed in terms of the limits, given in *Table 4.2.3*, as it relates to the capacity of a pipe with broken bar wraps or corrosion.

FEA was performed for the 820-mm, Class 100 BWP design at five (5) varying levels of distress. Based on each analysis, deflection and pressure performance curves were generated to show September 2017 Page 41 of 53

the zones or Limits in terms of the number of broken reinforcing bars and the applied internal pressure. Each level of distress consisted of a specific number of broken bar wraps and a uniform amount of corrosion at the location of the broken wraps.

Figure 4.2.3 shows the performance curves generated for the 820-mm, Class 100 BWP design. Note that for the pressure performance curve, the Micro Cracking Limit is exceeded at 0 psi with no broken bar wraps; therefore, this curve is not visible in the figure. Full-page FEA performance curves are provided in *Appendix B*.

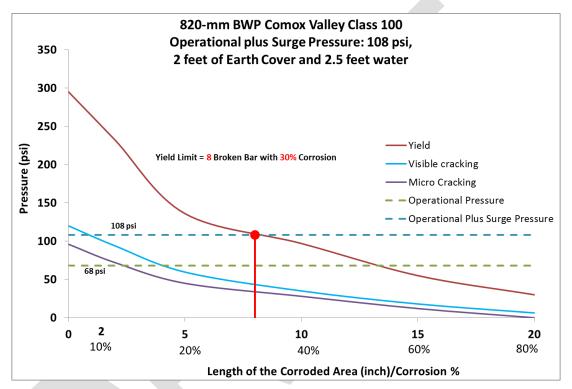


Figure 2.4: Pressure Performance Curve for an 820-mm Class 100 BWP

Pure Technologies typically recommends mitigating the risk associated with operating a particular pipe when the model predicts that the pipe meets or exceeds the Yield Limit. In reality, the Limit that a pipe exceeds is only one factor to consider when deciding whether to rehabilitate a pipe. Other variables that are critical for HDR (e.g., redundancy, consequence of failure, and criticality), should be evaluated when determining the risk tolerance associated with a distressed pipe.

TECHNOLOGIES

5. Analysis and Discussion

Analysis of the data obtained during the inspection determined that no pipes in the CPS Force Main displayed electromagnetic anomalies consistent with prestressing wire damage. Additionally, no leaks were identified and the majority of air events were located in proximity of the insertion point, near Courtenay Pump Station and are likely related to tool insertion procedures.

FEA evaluates the impact of a growing number of broken prestressing wire wraps on the performance of a PCCP and the corresponding likelihood of failure associated with this damage. Failure risk is expressed in terms of Limits, given in *Table 4.1.2 and Table 4.2.3*. These Limits describe the ability of a pipe with broken prestressing wire wraps to resist deformation and further deterioration.

For the CPS Force Main, 750-mm LCP and 820-mm BWP were evaluated using FEA performance curves, the number of broken wire wraps required to exceed the Micro Cracking Limit, Visible Cracking Limit, Yield Limit, and Strength Limit were derived from the intersection of the associated Limit Curve and the design operating pressure plus surge pressure (detailed in *Table 4.1.2*).

No pipes on the CPS Force Main were identified to exceed any of the Micro Cracking, Visible Cracking, Yield, or Strength Limits.

6. Conclusions and Recommendations

6.1 Conclusions

In summary, for the 2017 condition assessment evaluation of the CPS Force Main, Pure Technologies concludes that:

- One (1) acoustic anomaly characteristic of pockets of trapped transient gas, five (5) acoustic anomalies characteristic of transient gas and two (2) acoustic anomalies characteristic of entrained air were identified within the 750-mm LCP section.
- No acoustic anomalies were identified within the 450-mm and the 820-mm sections of the force main during the SmartBall inspection.
- Of the 1,258 pipes inspected in the CPS Force Main, no pipes had electromagnetic anomalies consistent with broken prestressing wire wraps or broken bar wraps.
- The electromagnetic analysis of the 750-mm LCP identified eight (8) pipes with anomalous signals. The signal shift identified in the anomalous pipes is different from both a standard non-distressed pipe and a pipe with broken wire wraps. The signal shift could be caused by a change in pipe property. Anomalous Pipe 1099 corresponds to a spot repair, implemented in 2003. In regards to the rest anomalous pipes, Pure Technologies requires more information to provide a conclusive evaluation of the electromagnetic signal.
- A transient pressure monitor was installed on the header of the force main at the Courtenay Pump Station. Pressure data was recorded between May 24, 2017 and June 29, 2017, in order to identify the hydraulic stresses acting on the pipeline. During the monitoring period, the sensor recorded an average pressure of 31.8 psi, with a maximum pressure of 68.2 psi.
- Based on the results of the AWWA C301 analysis, the pipe design for 750-mm LCP satisfied the criteria for the current design pressure and earth cover. However, the pipe design at 2- and 4-feet of earth cover and a design working pressure of 108 psi did not satisfy the AWWA C304 design criteria. Two (2) Serviceability Limiting Criteria were not satisfied (i.e., the calculated value exceeded the limiting value). The pipes created using this design are not expected to fail; rather, the pipes should be considered under-designed by the current standard, based on the earth cover and pressure (68 psi) used in the analysis. Although the 750-mm LCP design does not meet the design standard, the values are within 5 percent of passing.
- Based on the results of the AWWA C303 analysis, the pipe design for the 820-mm BWP, Class 100 satisfied the criteria for the current design pressure and earth cover.
- No pipes on the CPS Force Main were identified to exceed any of the Micro Cracking, Visible Cracking, Yield, or Strength Limits based on the finite element analysis.

September 2017

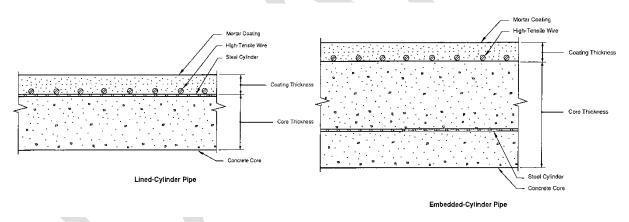
6.2 Recommendations

Based on the results of the internal inspection and subsequent condition assessment of the CPS Force Main Pure Technologies' recommends the following:

- In order to address acoustic anomalies characteristic of static air pockets and transient gas, verify operation of all the air valves on the pipeline.
- In order to detect any new distress on the CPS Force Main, Pure Technologies recommends reinspecting the pipeline in seven (7) years.
- The CPS Force Main has no damaged pipes at this time as detected by the electromagnetic assessment. However, the rate of wire break activity can vary significantly depending on a number of variables. As a result, and since the CPS Force Main is a critical asset with a high consequence of failure, it is recommended that CVRD implement procedures to proactively manage the transmission main system via acoustic monitoring. An acoustic monitoring system will detect and report wire breaks as they occur in near real time. This information is combined with the electromagnetic inspection data to allow CVRD to analyze the condition of the CPS Force Main (i.e., the number of broken wire wraps on each pipe section). This is the best available and most economical option to minimize the risk of future pipeline failure when combined with proactive rehabilitations.

References

- 1. American Water Works Association Research Foundation, Failure of Prestressed Concrete Cylinder Pipe, Denver, Colorado: AWWA; 2007.
- 2. American Water Works Association, AWWA C304 Standard for Design of Prestressed Concrete Cylinder Pipe, Denver, Colorado: AWWA; 2007.
- 3. American Water Works Association, AWWA C301 Standard for Prestressed Concrete Pressure Pipe, Steel-Cylinder Type, For Water and Other Liquids, Denver, Colorado: AWWA; 1992.
- 4. Interpace, Lock Joint Concrete Pressure Pipe, Engineering Manual. Cherry Hill: Interpace; 1973.
- 5. American Concrete Pipe Association, Concrete Pipe Design Manual, Vienna: ACPA; 2007.
- Villalobos J. L., Effects of Prestressed Concrete Pipe in a High Chloride Environment after 19 Years of Service, Pipelines in the Constructed Environment, ASCE, Reston, VA, 1998, pp. 575-583.
- Price R. E., Lewis R. A., and Erlin B., Effects of Environment on the Durability of Prestressed Concrete Cylinder Pipe, Pipelines in the Constructed Environment, ASCE, Reston, VA, 1998, pp. 584-593.
- Walsh T. L., Hodge D.S., Overcoming the Challenges of Replacing 20 km of Defective 1524 mm Diameter PCCP, Pipelines in the Constructed Environment, ASCE, Reston, VA, 1998, pp. 602-611.
- 9. Knowles W. L. C., Failure of Prestressed Concrete Embedded Cylinder Pipe, Design and Installation, Kenneth Kienow ed., ASCE, NY, 1990, pp. 434-441.
- 10. Galleher J. J., Stift M.T., Internal Inspection and Database Development of PCCP, Pipelines in the Constructed Environment, ASCE, Reston, VA, 1998, pp. 721-730.
- 11. Ojdrovic R. P., Zarghamee M. S., Hegar J.R., and Westman T., Condition Assessment of a PCCP Line Accessible from Outside Only, Pipelines 2001-Advances in Pipeline Engineering & Construction, Joseph Castronov ed., ASCE, Reston, VA (CD-ROM) ,2001.
- Parks R. R., Drager J. K. and Ojdrovic R. P., Condition Assessment and Rehabilitation of the Windy Gap Pipeline – An Owner's Perspective, Pipelines 2001-Advances in Pipeline Engineering & Construction, Joseph Castronov ed., ASCE, Reston, VA (CD-ROM), 2001.
- 13. Price R. E., The Investigation Cause and Prevention of PCCP Failures, Proceeding AWWA Annual Conference, 1990, pp. 663-681.
- 14. Drimalas T., Clement J., Folliard K., Dhole R., Thomas M., Laboratory and Field Evaluations of External Sulfate Attack in Concrete, Center for Transportation Research at The University of Texas at Austin, 2010, pp. 1-13.
- 15. Romer E. A., Graham E., Bell C., Clark B., Failure of Prestressed Concrete Cylinder Pipe for AWWA Research Foundation


APPENDIX A History of PCCP

A. Overview of PCCP

A.1 PCCP History and Manufacturing

PCCP has been used for large diameter water transmission and distribution mains since 1942. PCCP is a complex, composite structure consisting of a concrete core, a thin steel cylinder, highstrength steel prestressing wire, and a mortar coating. The concrete core and prestressing wire are the main structural components, while the steel cylinder acts primarily as a water barrier. The prestressing wire produces a uniform compressive force on the concrete core that holds the concrete in compression when the pipe is subjected to internal water pressure and external loading. A mortar coating surrounds the prestressing wire, embedding the wraps in an alkaline environment to protect them from external corrosive influences and physical damage.

Two types of PCCP are used in transmission mains: lined cylinder pipe (LCP) and embedded cylinder pipe (ECP). In LCP, the prestressing wire is wrapped directly against the steel cylinder, while in ECP the steel cylinder is embedded in the concrete core, meaning that the prestressing wire is wrapped against the outer concrete core rather than the steel cylinder. The diameter ranges for LCP and ECP are 16 to 60 inches and 30 to 256 inches, respectively. Cross-sectional views of LCP and ECP, as described in the current AWWA C304-07 Standard, *Design of Prestressed Concrete Cylinder Pipe*, are shown in Figure A.1.

PCCP design and manufacturing standards have gradually developed since 1943, with the first tentative consensus standard for PCCP being approved by the AWWA in 1949. The AWWA C301 *Standard Specifications for Reinforced Concrete Water Pipe - Steel Cylinder Type, Prestressed* (AWWA C301-52) was revised multiple times, with the latest revision being released in 2007. In 1992, the AWWA created a new standard for PCCP design and manufacturing called AWWA C304 *Design of Prestressed Concrete Cylinder Pipe* (AWWA C304).

The initial structural design requirements for the manufacturing of PCCP tended to be conservative [1, 5, 6], with high factors of safety. As experience with using this composite pipe grew, understanding of the behavior of PCCP increased, and advances in material sciences were

achieved, the structural design of PCCP was changed to reduce the cost of manufacturing. Increases in the applied tensile strength of the wire that occurred during manufacturing in the late 1960s and early 1970s reduced the amount of prestressing steel wire required and allowed for the use of smaller diameter wire. This resulted in what appeared to be a more efficient design and cost-effective manufacturing process.

Changes in PCCP design with respect to the prestressing wire were primarily based on updates to the American Society for Testing and Materials (ASTM) A227, *Standard Specifications for Hard-Drawn Steel Spring Wire*, and ASTM A648, *Standard Specification for Steel Wire*, *Hard Drawn for Prestressing Concrete Pipe*. The updated standards significantly changed the composition of the steel prestressing wire in order to increase its tensile strength. Tensile strength is defined as the amount of stress the wires are able to withstand before either permanent deformation or failure occurs. Increasing the material strength by modifying the composition of the steel and the manufacturing process allowed for a reduction in the overall amount of steel needed to achieve the minimum tensile strength required for the pipe design. This created a cost reduction for the pipe manufacturer and provided a cost advantage for the pipe owner. Due to the competitive cost of PCCP in comparison to other pipe materials, its popularity grew significantly with water and wastewater utilities in the United States for their large diameter pressure pipelines in the 1960s and 1970s.

Updates to the ASTM standards and the adoption of the AWWA C301-64 Standard in 1964 led to significant changes in the design and manufacture of PCCP that decreased the minimum prestressing wire diameter, increased the allowable concrete core stress when the wire was wrapped, reduced the amount of Portland cement in the core, and decreased the minimum coating thickness [1]. As the ASTM standards changed and wire strength increased, classifications of wire were developed based on their tensile strength (Class I, Class II, and Class III).

These practices culminated in the 1970s when pipes using an even stronger Class IV wire and other cost saving measures were manufactured. Class IV wire was produced by using a loophole in the ASTM and AWWA standards, which did not define a maximum tensile strength. Class IV prestressing wire was drawn at very high temperatures to increase the ultimate tensile strength and thereby reduce the amount of steel required. All classes of prestressing wire are susceptible to external corrosion, hydrogen embrittlement, and other failure modes; however, the high temperatures used to manufacture Class IV wire made it particularly sensitive to hydrogen embrittlement and dynamic strain aging effects. Pipe from this era using Class IV prestressing wire started experiencing a high rate of premature failures, primarily related to the new standards and manufacturing processes.

Updates to the AWWA C301 Standard beginning in the 1980s have significantly improved the design and manufacturing of PCCP, increasing the quality of pipe produced and installed. The major revisions in the standards, design, and manufacturing of the PCCP consisted of changes in the maximum diameter of the PCCP, the quality (strength) of the concrete, the thickness of the

steel cylinder, the prestressing wire specifications (e.g., wire diameter, wrapping stress, spacing), and the thickness of the mortar coating [1].

Figures A.2 (a), A.2 (b), and A.2 (c) provide graphic representations of the minimum steel cylinder thickness, prestressing wire diameter, and mortar coating thickness required by the AWWA C301 and AWWA C304 Design Standards between 1949 and 2007 [1].

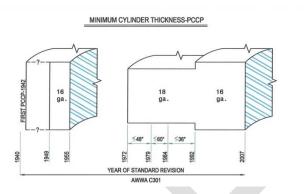
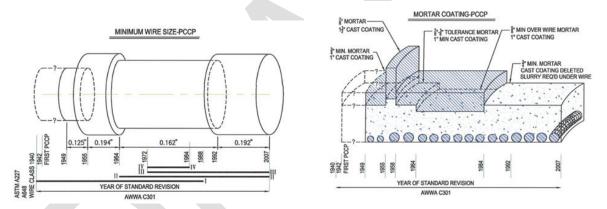



Figure A.2 (a): Minimum Required Steel Cylinder Thickness [1].

Figures A.2 (b) and A.2 (c): Minimum Required Prestressing Wire Diameter [1] and Minimum Required Mortar Coating Thickness [1].

A.2 PCCP Failure Modes

Several causes for PCCP failure have been reported: a high chloride environment [7], poor quality of mortar coating [8], poor quality of prestressing wire [9, 10], a corrosive environment [11], inadequate thrust resistance [12], construction damage, cracks in the cylinder welds, and delamination of the coating [13]. Most PCCP failures result from a breakdown of the mortar coating leading to corrosion or hydrogen embrittlement of the prestressing wire wraps. This causes incremental wire break damage that grows with time until the pipe eventually ruptures. As each wire wrap breaks, the individual pipe's strength is incrementally reduced. A summary of PCCP failures, as reported in the AWWA Research Foundation report [1], include:

• Ruptures or breaks in the prestressing wire wraps

- Leaking at the joints
- Cracks in the concrete core
- Low quality concrete core (poor concrete strength)
- Hydrogen sulfide (H₂S wastewater applications)
- Cracking in the cylinder welds (poor fit up)
- Low quality prestressing wire
- Overloading due to excessive dead load and live load during service life
- Excessive surge pressures
- Inadequate total prestressing following a wire splice
- Low quality of mortar (low density, low thickness, low cement content)
- High chlorides in the soil (corrosive or aggressive soil)
- Poor bedding
- Dents in the PCCP due to fabrication and construction defects
- Overwrapping of the prestressing wire, resulting in the wire wraps being spaced too closely
- Inadequate total prestressing in the pipe
- Loss of prestress during production
- Missing joint coating
- Hydrogen embrittlement
- Construction damage (coating damaged and not repaired)
- Coating delamination
- Cracking in the joint welds
- Hydrotest pressure in excess of the design pressure
- Excessive external load (greater than the design load)
- Inadequate joint restraint (pipe moved, exposing the joint to the environment)

A.3 PCCP Failure Rate by Pipe Vintage

The American Water Works Association Research Foundation completed a study on the modes of failure experienced in nearly 36,000 sections of PCCP [1]. Category 1 failures were characterized as catastrophic ruptures and leaks of the main. Category 2 failures were defined as pipes with significant deterioration or structural weakness discerned by various inspection techniques including visual, sounding, and electromagnetics, while Category 3 failures resulted in a loss of service. In the figure, failure rates for each era were calculated as number of failures divided by the number of pipes produced. The Category 1 (Blue) failure rate for pipes manufactured after 1991 continued to decrease with the introduction of more stringent PCCP design requirements. Figure A.3 details the failure rates of PCCP based on the year of production.

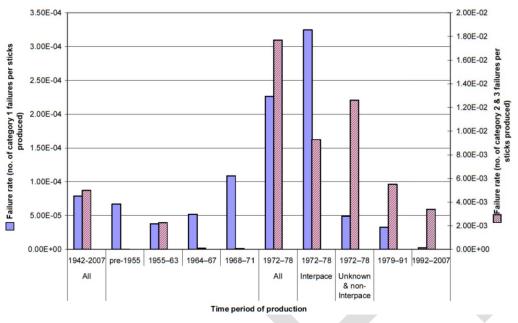
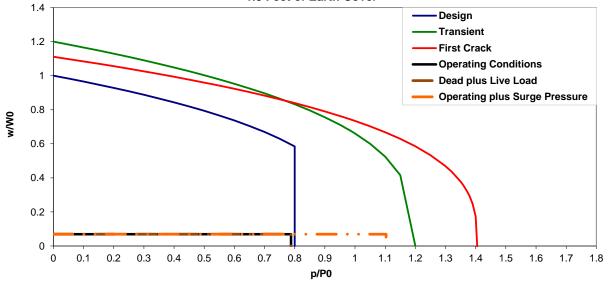


Figure A.3 Failure Rate of PCCP by Pipe Vintage [1]


APPENDIX B AWWA C301/C304/C303 Results

AWWA C-301 PCCP Design Analysis - Lined Cylinder Pipe		Openaka Inc.
30-inch Diameter PCCP under 1.5 Feet of Earth Cover		Date
45 degree bedding angle	LCP	Project No.

Pipe Dimensions		
Diameter of Pipe	D	30 in
Core Thickness	tc	2.7402 in
Outside Diameter of Cylinder	Dy	35.6 in
Cylinder Thickness	ty	0.0598 in
Diameter of Wire	dw	0.162 in
Specified Coating Thickness		1 in
Prestressed Wires Properties		
Area of Steel Wire	As	0.176 sq in/LF
Ultimate Strength of Wire	fsu	262,000 psi
Gross Wrapping Stress of Wire	fsg	196,500 psi
Wire Relaxation Loss Factor	R1	0.05
Wire Embedment Loss Factor	R2	0
Concrete Properties		
Concrete Core	f'c	5500 psi
Coating Mortar	f'm	6000 psi
Soil & Bedding Properties		
Height of Earth Cover	Н	1.5 ft
Soil Density	γs	127 lb/cft
Coeff. of Lateral Earth Pressure	Κμ'	0.165
Clearance(Pipe & Trench Wall)	х	1 ft*
Trench Width	Bd	4.12 ft
Bedding Factor (Load Factor)	Lf	1.50
Transition Width	Tw	12.30 ft
Other Constants		
C-301 constants		
Initial Modular Ratio of Elasticity	ni	6 Es/Eci
Resultant Modular Ratio	nr	5 Es/Ecr
Concrete Core Creep Factor	Cr	1.5

Design Conditions (AWWA C-30)1)		
Working Pressure	Pw	100 psi	
Surge/Water Hammer Press.	Psp/Pwh	40 psi	
Test Pressure	Pt	140 psi	
Live Load H-20			
Live Load Impact Factor	lf	27%	
Calculation			
Area of Concrete Core	Ac	32.16 sq in/L	.F
Area of Steel Cylinder	Ay	0.7176 sq in/L	.F
Weight of the Pipe	Wp	417.2 lb/LF	
Weight of Water	Ww	306.3 lb/LF	
W Dead (Earth Load)	Wd	493.5 lb/LF	
W live (H-20+Impact Factor)	WI	0.0 lb/LF	
Initial Conditions (C-301)			
Initial Wire Stress	fsi	181,422 psi	
Initial Cylinder Stress	fyi	5,253 psi	
Initial Concrete Core Stress	fci	876 psi	
Concrete Strength at Wrap	f'ci	3,000 psi	
Resultant Conditions (C-301)			
Resultant Wire Stress	fsr	176,548 psi	
Resultant Cylinder Stress	fyr	10,127 psi	
Resultant Concrete Core Stress	fcr	740 psi	
Pressures (C-301)			
Zero Concrete Stress Press.	P0	127 psi	
Elastic Limit Pressure	PI	195 psi	
Bursting Pressure	Pb	367 psi	
Pipe's Strength (C-301)			
Three Edge Bearing Strength	W001	7,926 lb/LF	
0.9*W001	WO	7,134 lb/LF	

AWWA C301 - Evaluation Design Strength: LCP 1.5 Feet of Earth Cover

30-inch Diameter PCCP under 1.5 45 degree bedding angle		ylinder Pip	Je			Openaka Inc.	
	Feet of Earth	Cover				Date	
				LCP		Project No.	
Serviceability Limit State Criterion	Load Comb	N1	M1	Strain or Stress	Limit	Criterion Satisfied	
Full Pipe Circumference				offair of offess	Linin	Cinteriori Gatisned	
Produce Core Decompression	W1	21152.93	4392.324	100	90.1	Not Satisfied	CRIT
P≤P0)							~ ~ ~ ~
Produce Coating Cracking P≤min(Pk',1.4P0)	WT1	29696.93	4392.324	140	135.1	Not Satisfied	CRIT
nvert & Crown							
nside Core Tensile Strain	W1	21152.93	4392.324	-1.12E-05	2.03E-04	Yes	
cci ≤ 1.5*ε't							
nside Core Tensile Strain	WT1	29696.93	4,392	3.86E-05	1.49E-03	Yes	
cci ≤ ε'k	WT2	21152.93	4392.324	-1.12E-05	1.49E-03	Yes	•
	FT1	32666.62	4831.556	7.07E-05	1.49E-03	Yes	•
							•
Core to Cylinder Radial Tension		-273.43	4886.184	-88	12	Psi Yes	
or≤12 psi	WT3	-207.072	4392.324	-88	12	Psi Yes	
Springline Outer Core Tensile Strain	W1	20806.59	2280.227	-3.50E-08	2.03E-04	Yes	
$cco \le 1.5^{*}\epsilon't$		_0000.09		3.50L 00	2.032-04	103	•
Outer Coating Tensile Strain	W1	20806.59	2280.227	1.80E-04	9.28E-04	Yes	
εmo ≤ 0.8*ε'km							
Outer Core Tensile Strain	WT1	29350.59	2,280	5.84E-05	1.49E-03	Yes	
$\varepsilon co \le \varepsilon' k$	WT2	20806.59	2280.227	-3.50E-08	1.49E-03	Yes	•
	FT1	32285.65	2508.25	7.91E-05	1.49E-03	Yes	-
Duter Coating Tensile Strain εmo ≤ ε'km	WT1	29350.59	2,280	2.40E-04	1.16E-03	Yes	
emo ≤ ε κm	WT2 FT1	20806.59 32285.65	2280.227 2508.25	1.80E-04 2.61E-04	1.16E-03 1.16E-03	Yes Yes	
		32203.03	2300.23	2.012-04	1.102-05	163	•
Inner Core Compression	W2	-553.407	2280.227	747.46	3025	Psi Yes	_
fci ≤ 0.55f'c, fci ≤ 0.65f'c	WT3	-553.407	2280.227	747.46	3575	Psi Yes	
Elastic Limit							
Limit State Criterion	Load Comb	N1	M1	Strain or Stress	Limit	Criterion Satisfied	
nvert & Crown							
Yielding of cylinder	WT1	29696.93	4392.324	-8,151.51	27,000	Yes	
-fyr+n'*fcr+Δfy≤ fyy	WT2	21152.93	4392.324	-9,401.03	27,000	Yes	
	FT1	32666.62	4831.556	-7,898.33	27,000	Yes	
Onset of Tension in Cylinder	WT3	-207.072	4,392	-12,700.59	0	Yes	
-fyr+n'*fcr+Δfy≤ 0			4,002	12,100.00	v	105	•
Springline							
	FWT1	32,286	2,508	169,283	196,500	Yes	
	FWT2	22,887	2,508	167,529	196,500	Yes	Cautio Cautio
							Cautio
Wire Elastic Limit fs≤ fsg orfsr+nfcr+∆fs≤ fsg Core Compression Limit	FWT2 FT2	22,887 35,514	2,508 2,759	167,529 169,958	196,500 196,500	Yes Yes	Cautio
is≤ fsg orfsr+nfcr+∆fs≤ fsg Core Compression Limit	FWT2 FT2 FWT1 FWT2	22,887	2,508	167,529	196,500	Yes	Cautio
is≤ fsg orfsr+nfcr+∆fs≤ fsg Core Compression Limit	FWT2 FT2 FWT1	22,887 35,514 32,286	2,508 2,759 2,508	167,529 169,958 -82	<u>196,500</u> 196,500 4,125	Yes Yes Yes	Cautio
fs≤ fsg orfsr+nfcr+∆fs≤ fsg Core Compression Limit Ic ≤ 0.75f°c	FWT2 FT2 FWT1 FWT2	22,887 35,514 32,286 22,887	2,508 2,759 2,508 2,508	167,529 169,958 -82 159	<u>196,500</u> <u>196,500</u> <u>4,125</u> 4,125	Yes Yes Yes Yes	Cautio
is≤ fsg orfsr+nfcr+∆fs≤ fsg Core Compression Limit ic ≤ 0.75f°c Strength Limit	FWT2 FT2 FWT1 FWT2 FT2	22,887 35,514 32,286 22,887 35,514	2,508 2,759 2,508 2,508 2,508 2,759	167,529 169,958 -82 159 -151	<u>196,500</u> <u>196,500</u> <u>4,125</u> <u>4,125</u> <u>4,125</u>	Yes Yes Yes Yes Yes	Cautio Cautio
is≤ fsg orfsr+nfcr+∆fs≤ fsg Core Compression Limit c ≤ 0.75f°c Strength Limit _imit State Criterion	FWT2 FT2 FWT1 FWT2	22,887 35,514 32,286 22,887	2,508 2,759 2,508 2,508	167,529 169,958 -82 159	<u>196,500</u> <u>196,500</u> <u>4,125</u> 4,125	Yes Yes Yes Yes	Cautio Cautio
is≤ fsg orfsr+nfcr+∆fs≤ fsg <u>Core Compression Limit</u> c ≤ 0.75fc Strength Limit <u>Limit State Criterion</u> <u>Springline</u> Wire-Yield Limit for	FWT2 FT2 FWT1 FWT2 FT2	22,887 35,514 32,286 22,887 35,514	2,508 2,759 2,508 2,508 2,508 2,759	167,529 169,958 -82 159 -151	<u>196,500</u> <u>196,500</u> <u>4,125</u> <u>4,125</u> <u>4,125</u>	Yes Yes Yes Yes Yes	Cautio Cautio
is≤ fsg orfsr+nfcr+∆fs≤ fsg <u>Core Compression Limit</u> c ≤ 0.75fc Strength Limit <u>Limit State Criterion</u> <u>Springline</u> Wire-Yield Limit for	FWT2 FT2 FWT1 FWT2 FT2 Load Comb	22,887 35,514 32,286 22,887 35,514 N2	2,508 2,759 2,508 2,508 2,508 2,759 M2	<u>167,529</u> 169,958 <u>-82</u> <u>159</u> -151 M2, Fs	196,500 196,500 4,125 4,125 4,125 4,125 Limit	Yes Yes Yes Yes Yes Yes	Cautio Cautio
s≤ fsg orfsr+nfcr+∆fs≤ fsg Core Compression Limit c ≤ 0.75fc Strength Limit Limit State Criterion Springline Wire-Yfeld Limit for N ₂ ≥ N _k , M ₂ ≤ M _{2Sy} s fsg or .fsr+nfcr+∆fs≤ fsy	FWT2 FT2 FWT1 FWT2 FT2 Load Comb FWT3 FWT4 FWT3	22,887 35,514 32,286 22,887 35,514 N2 38155.77 27048.57 38155.77	2,508 2,759 2,508 2,508 2,759 M2 2964.295 2964.295 2964.295	167,529 169,958 -82 -151 -151 M2, Fs 2,964.30 2,964.30 170,437.67	196,500 196,500 4,125 4,125 4,125 4,125 Limit 154,219 23,666 222,700	Yes Yes Yes Yes Yes Criterion Satisfied Yes Yes Yes	Cautio Cautio
s≤ fsg orfsr+nfcr+∆fs≤ fsg Core Compression Limit c ≤ 0.75fc Strength Limit Limit State Criterion Springline Wire-Yfeld Limit for N ₂ ≥ N _k , M ₂ ≤ M _{2Sy} s fsg or .fsr+nfcr+∆fs≤ fsy	FWT2 FT2 FWT1 FWT2 FT2 Load Comb FWT3 FWT4	22,887 35,514 32,286 22,887 35,514 N2 38155.77 27048.57	2,508 2,759 2,508 2,508 2,759 <u>M2</u> 2964.295 2964.295	167,529 169,958 -82 159 -151 M2, Fs 2,964.30 2,964.30	196,500 196,500 4,125 4,125 4,125 4,125 Limit 154,219 23,666	Yes Yes Yes Yes Yes Criterion Satisfied Yes Yes	Cautio Cautio
s≤ fsg orfsr+nfcr+ Δ fs≤ fsg Core Compression Limit c ≤ 0.75fc Strength Limit .imit State Criterion Springline Wire-Yield Limit for V ₂ ≥ N _k ', M ₂ ≤ M _{2sy} s≤ fsg or -fsr+nfcr+ Δ fs≤ fsy s≤ fsg or -fsr+nfcr+ Δ fs≤ fsy	FWT2 FT2 FWT1 FWT2 FT2 Load Comb FWT3 FWT4 FWT3	22,887 35,514 32,286 22,887 35,514 N2 38155.77 27048.57 38155.77	2,508 2,759 2,508 2,508 2,759 M2 2964.295 2964.295 2964.295	167,529 169,958 -82 -151 -151 M2, Fs 2,964.30 2,964.30 170,437.67	196,500 196,500 4,125 4,125 4,125 4,125 Limit 154,219 23,666 222,700	Yes Yes Yes Yes Yes Criterion Satisfied Yes Yes Yes	Cautio Cautio
s≤ fsg orfsr+nfcr+ Δ fs≤ fsg Core Compression Limit c ≤ 0.75fc Strength Limit .imit State Criterion Springline Wire-Yield Limit for V ₂ ≥ N _k ', M ₂ ≤ M _{2sy} s≤ fsg or -fsr+nfcr+ Δ fs≤ fsy s≤ fsg or -fsr+nfcr+ Δ fs≤ fsy	FWT2 FT2 FWT1 FWT2 FT2 FWT3 FWT4 FWT3 FWT4	22,887 35,514 32,286 22,887 35,514 N2 38155.77 27048.57 27048.57	2,508 2,759 2,508 2,508 2,759 M2 2964.295 2964.295 2964.295 2964.295	167,529 169,958 -82 -151 -151 M2, Fs 2,964.30 2,964.30 170,437.67 168,364.29	196,500 196,500 4,125 4,125 4,125 4,125 Limit 154,219 23,666 222,700 222,700	Yes Yes Yes Yes Yes Criterion Satisfied Yes Yes Yes Yes	Cautio Cautio
iss fsg orfsr+nfcr+Δfs≤ fsg Core Compression Limit ic ≤ 0.75f'c Strength Limit Limit State Criterion Springline Wire-Yield Limit for N ₂ ≥ N _k ', M ₂ ≤ M _{2sy} iss fsg or .fsr+nfcr+Δfs≤ fsy iss fsg or .fsr+nfcr+Δfs≤ fsy Ultimate Moment	FWT2 FT2 FWT1 FWT2 FT2 Load Comb FWT3 FWT4 FWT3	22,887 35,514 32,286 22,887 35,514 N2 38155.77 27048.57 27048.57	2,508 2,759 2,508 2,508 2,759 M2 2964.295 2964.295 2964.295	167,529 169,958 -82 -151 -151 M2, Fs 2,964.30 2,964.30 170,437.67	196,500 196,500 4,125 4,125 4,125 4,125 Limit 154,219 23,666 222,700	Yes Yes Yes Yes Yes Criterion Satisfied Yes Yes Yes	Cautio Cautio
fs≤ fsg orfsr+nfcr+∆fs≤ fsg Core Compression Limit	FWT2 FT2 FWT1 FWT2 FT2 FWT3 FWT4 FWT3 FWT4	22,887 35,514 32,286 22,887 35,514 N2 38155.77 27048.57 27048.57	2,508 2,759 2,508 2,508 2,759 M2 2964.295 2964.295 2964.295 2964.295	167,529 169,958 -82 -151 -151 M2, Fs 2,964.30 2,964.30 170,437.67 168,364.29	196,500 196,500 4,125 4,125 4,125 4,125 Limit 154,219 23,666 222,700 222,700	Yes Yes Yes Yes Yes Criterion Satisfied Yes Yes Yes Yes	Cautio Cautio
iss fsg orfsr+nfcr+Δfs≤ fsg Core Compression Limit ic ≤ 0.75f'c Strength Limit Limit State Criterion Springline Wire-Yield Limit for V_2 ≥ N_k , M_2 ≤ M_{29y} iss fsg or -fsr+nfcr+Δfs≤ fsy iss fsg or -fsr+nfcr+Δfs≤ fsy Ultimate Moment Core Crashing	FWT2 FT2 FWT1 FWT2 FT2 FWT3 FWT3 FWT3 FWT4 FWT3 FWT4 FWT4 FWT4	22,887 35,514 32,286 22,887 35,514 N2 38155.77 27048.57 88155.77 27048.57 N2	2,508 2,759 2,508 2,508 2,508 2,759 M2 2964.295 2964.295 2964.295 2964.295 M2	167,529 169,958 -82 -159 -151 M2, Fs 2,964.30 2,964.30 170,437.67 168,364.29 Strain or Stress	196,500 196,500 4,125 4,125 4,125 4,125 Limit 154,219 23,666 222,700 222,700 Limit	Yes Yes Yes Yes Yes Criterion Satisfied Yes Yes Yes Yes Yes	Cautio
is≤ fsg orfsr+nfcr+∆fs≤ fsg Core Compression Limit c ≤ 0.75f c Strength Limit Limit State Criterion Springline Wire-Yield Limit for Vj≥ N _x , M ₂ ≤ M _{2ay} s≤ fsg or -fsr+nfcr+∆fs≤ fsy s≤ fsg or -fsr+nfcr+∆fs≤ fsy JItimate Moment Core Crashing M≤M _{2uit})	FWT2 FT2 FWT1 FWT2 FT2 FWT3 FWT3 FWT3 FWT4 FWT3 FWT4 FWT4 FWT4	22,887 35,514 32,286 22,887 35,514 N2 38155.77 27048.57 88155.77 27048.57 N2	2,508 2,759 2,508 2,508 2,508 2,759 M2 2964.295 2964.295 2964.295 2964.295 M2	167,529 169,958 -82 -159 -151 M2, Fs 2,964.30 2,964.30 170,437.67 168,364.29 Strain or Stress	196,500 196,500 4,125 4,125 4,125 4,125 Limit 154,219 23,666 222,700 222,700 Limit	Yes Yes Yes Yes Yes Criterion Satisfied Yes Yes Yes Yes Yes	Cautio Cautio
iss fsg orfsr+nfcr+Δfs≤ fsg Core Compression Limit ic ≤ 0.75f'c Strength Limit Limit State Criterion Springline Wire-Yield Limit for V_2 ≥ N_k , M_2 ≤ M_{29y} iss fsg or -fsr+nfcr+Δfs≤ fsy iss fsg or -fsr+nfcr+Δfs≤ fsy Ultimate Moment Core Crashing	FWT2 FT2 FWT1 FWT2 FT2 FWT3 FWT3 FWT3 FWT4 FWT3 FWT4 FWT4 FWT4	22,887 35,514 32,286 22,887 35,514 N2 38155.77 27048.57 88155.77 27048.57 N2	2,508 2,759 2,508 2,508 2,508 2,759 M2 2964.295 2964.295 2964.295 2964.295 M2	167,529 169,958 -82 -159 -151 M2, Fs 2,964.30 2,964.30 170,437.67 168,364.29 Strain or Stress	196,500 196,500 4,125 4,125 4,125 4,125 Limit 154,219 23,666 222,700 222,700 Limit	Yes Yes Yes Yes Yes Criterion Satisfied Yes Yes Yes Yes Yes	Cautic Cautic

FWT6 0 0

240

367

Yes

Burst Failure (P≤Pb)

Severity Level:

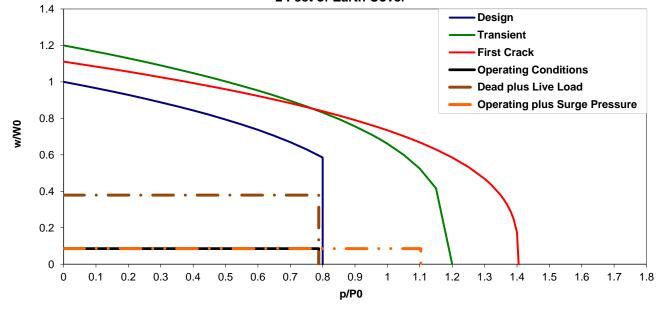
1

Factors of Safety	Calculations:		1.45
Load case	core compr.	cylinder yield	wire yield
WT1			1.45
WT2	7.36		1.46
WT3	7.36		
Pressure			3.67
Pressure+transient			2.62

Severity Level 5 4

3 2

no issue as microcracking limits are not exceeded microcracking limits exceeded, but visable cracking limits not e visual cracking limits are exceeded, but not elastic limits elastic limits are exceeded, but strength limits are not exceede strength limits are exceeded


Caution Extreme Caution CRITICAL	Strain or Stress/Limit > 80% Strain of Stress/Limit > 90% Strain of Stress/Limit > 100%
Microcracking Visable Cracking	

Elastic Limit Strength Limit

ing

AWWA C-301 PCCP Design An 30-inch Diameter PCCP under 2	1.05		Openaka Inc. Date		
45 degree bedding angle			LCP		Project No.
Pipe Dimensions			Design Conditions (AWWA C-30	1)	
Diameter of Pipe	D	30 in	Working Pressure	Pw	100 psi
Core Thickness	tc	2.7402 in	Surge/Water Hammer Press.	Psp/Pwh	40 psi
Outside Diameter of Cylinder	Dy	35.6 in	Test Pressure	Pt	140 psi
Cylinder Thickness	ty	0.0598 in	Live Load H-20		
Diameter of Wire	dw	0.162 in	Live Load Impact Factor	lf	25%
Specified Coating Thickness		1 in	Calculation		
Prestressed Wires Properties			Area of Concrete Core	Ac	32.16 sq in/LF
Area of Steel Wire	As	0.176 sq in/LF	Area of Steel Cylinder	Ay	0.7176 sq in/LF
Ultimate Strength of Wire	fsu	262,000 psi	Weight of the Pipe	Wp	417.2 lb/LF
Gross Wrapping Stress of Wire	fsg	196,500 psi	Weight of Water	Ww	306.3 lb/LF
Wire Relaxation Loss Factor	R1	0.05	W Dead (Earth Load)	Wd	609.6 lb/LF
Nire Embedment Loss Factor	R2	0	W live (H-20+Impact Factor)	WI	2093.5 lb/LF
Concrete Properties			Initial Conditions (C-301)		
Concrete Core	f'c	5500 psi	Initial Wire Stress	fsi	181,422 psi
Coating Mortar	f'm	6000 psi	Initial Cylinder Stress	fyi	5,253 psi
Soil & Bedding Properties			Initial Concrete Core Stress	fci	876 psi
Height of Earth Cover	н	2 ft	Concrete Strength at Wrap	f'ci	3,000 psi
Soil Density	γs	120 lb/cft	Resultant Conditions (C-301)		
Coeff. of Lateral Earth Pressure	Κμ'	0.165	Resultant Wire Stress	fsr	176,548 psi
Clearance(Pipe & Trench Wall)	х	1 ft*	Resultant Cylinder Stress	fyr	10,127 psi
Trench Width	Bd	4.12 ft	Resultant Concrete Core Stress	fcr	740 psi
Bedding Factor (Load Factor)	Lf	1.50	Pressures (C-301)		
Transition Width	Tw	12.30 ft	Zero Concrete Stress Press.	P0	127 psi
Other Constants			Elastic Limit Pressure	PI	195 psi
C-301 constants			Bursting Pressure	Pb	367 psi
Initial Modular Ratio of Elasticity	ni	6 Es/Eci	Pipe's Strength (C-301)		
Resultant Modular Ratio	nr	5 Es/Ecr	Three Edge Bearing Strength	W001	7,926 lb/LF
Concrete Core Creep Factor	Cr	1.5	0.9*W001	W0	7,134 lb/LF

AWWA C301 - Evaluation Design Strength: LCP 2 Feet of Earth Cover

• •		Cylinder Pip	be		· ·	Openaka Inc.
0-inch Diameter PCCP under 2 Fe	eet of Earth C	over				Date
5 degree bedding angle				LCP		Project No.
Serviceability	1			o		Only and any Only of the d
Limit State Criterion	Load Comb	. N1	M1	Strain or Stress	Limit	Criterion Satisfied
Produce Core Decompression	W1	21090.43	4857.467	100	90.1	Not Satisfied
P≤P0)		21000110	10011101			not outloned
roduce Coating Cracking	WT1	29634.43	4857.467	140	135.1	Not Satisfied
'≤min(Pk',1.4P0)						
ivert & Crown						
side Core Tensile Strain	W1	21090.43	4857.467	-7.27E-06	2.03E-04	Yes
ci ≤ 1.5*ε't						
side Core Tensile Strain	WT1	29634.43	4,857	4.22E-05	1.49E-03	Yes
ci ≤ ε'k	WT2	19964.36	13238.17	6.34E-05	1.49E-03	Yes
	FT1	32597.87	5343.213	7.50E-05	1.49E-03	Yes
ore to Cylinder Radial Tension	FW1	-351.553	5467.612	-87	12	Psi Yes
r ≤ 12 psi	WT3	-1395.64	13238.17	-78	12	Psi Yes
pringline	W1	20701 70	2520.264	2 125 06	2 02E 04	Yes
uter Core Tensile Strain co ≤ 1.5*ε't	VV I	20701.76	2529.264	2.12E-06	2.03E-04	TES
0 - 1.0 21						
uter Coating Tensile Strain	W1	20701.76	2529.264	1.84E-04	9.28E-04	Yes
no ≤ 0.8*ɛ'km						
		_				
outer Core Tensile Strain	WT1	29245.76	2,529	5.92E-05	1.49E-03	Yes
co ≤ ε'k	WT2	18812.93	7016.277	3.29E-05	1.49E-03	Yes
	FT1	32170.34	2782.19	8.10E-05	1.49E-03	Yes
uter Coating Tensile Strain	WT1	29245.76	2,529	2.42E-04	1.16E-03	Yes
no ≤ ɛ'km	WT2	18812.93	7016.277	2.53E-04	1.16E-03	Yes
	FT1	32170.34	2782.19	2.65E-04	1.16E-03	Yes
ner Core Compression	W2	-658.24	2529.264	762.98	3025	Psi Yes
i ≤ 0.55f'c, fci ≤ 0.65f'c	WT3	-2547.07	7016.277	1042.54	3575	Psi Yes
lastic Limit imit State Criterion	Load Comb	N1	M1	Strain or Stress	Limit	Criterion Satisfied
vert & Crown	Loau Comb		IVII	Suam of Suess	Linin	Chienon Satisfieu
ielding of cylinder	WT1	29634.43	4857.467	-8,209.78	27,000	Yes
fyr+n'*fcr+∆fy≤ fyy	WT2	19964.36	13238.17	-10,569.67	27,000	Yes
-	FT1	32597.87	5343.213	-7,965.45	27,000	Yes
nset of Tension in Cylinder	WT3	-1395.64	13,238	-13,869.24	0	Yes
iyr+n'*fcr+∆fy≤ 0 pringline						
/ire Elastic Limit	FWT1	32,170	2,782	169,341	196,500	Yes
≤ fsg orfsr+nfcr+∆fs≤ fsg	FWT2	20,694	7,718	168,628	196,500	Yes
	FT2	35,387	3,060	170,022	196,500	Yes
ore Compression Limit	FWT1	32,170	2,782	-65	4,125	Yes
:≤0.75f'c	FWT2	20,694	7,718	484	4,125	Yes
	FT2	35,387	3,060	-133	4,125	Yes
rength Limit						
mit State Criterion	Load Comb	N2	M2	M2, Fs	Limit	Criterion Satisfied
pringline						
ire-Yield Limit for	FWT3	38019.49	3288.043	3,288.04	155,249	Yes
2≥ N _k ', M ₂ ≤ M _{2sy}	FWT4	24456.81	9121.16	9,121.16	33,007	Yes
i≤ fsg or -fsr+nfcr+Δfs≤ fsy	FWT3	38019.49	3288.043	170,505.99	222,700	Yes
≤ fsg or -fsr+nfcr+Δfs≤ fsy	FWT4	24456.81	9121.16	169,663.59	222,700	Yes
timate Moment	Lood Court	NO	MO	Charles on Charles	I insta	Onitanian Paristical
ore Crashing	Load Comb	. N2	M2	Strain or Stress	Limit	Criterion Satisfied
l≤M _{2ult})	FWT5	-4.831	13.021	13.021	124.417	Yes

4.43	4857.467	-8,209.78	27,000	Yes
4.36	13238.17	-10,569.67	27,000	Yes
7.87	5343.213	-7,965.45	27,000	Yes
5.64	13,238	-13,869.24	0	Yes

FT1	32597.87	5343.213	-7,965.45	27,000	Yes	_
WT3	-1395.64	13,238	-13,869.24	0	Yes	
FWT1	32,170	2,782	169,341	196,500	Yes	Caution
FWT2	20,694	7,718	168,628	196,500	Yes	Caution

Ultimate Moment						
	Load Comb.	N2	M2	Strain or Stress	Limit	Criterion Satisfie
Core Crashing						
M≤M _{2ult})	FWT5	-4,831	13,021	13,021	124,417	Yes

Burst Pressure						
	Load Comb.	N	М	Strain or Stress	Limit	Criterion Satisfied
Burst Failure	FWT6	0	0	240	367	Yes
(P≤Pb)						

Severity Level:

Factors of Safety		1.45	
Load case	core compr.	cylinder yield	wire yield
WT1			1.45
WT2	7.21		1.45
WT3	5.28		
Pressure			3.67
Pressure+transient			2.62

Severity Level

no issue as microcracking limits are not exceeded
microcracking limits exceeded, but visable cracking limits not exceeded
visual cracking limits are exceeded, but not elastic limits
elastic limits are exceeded, but strength limits are not exceeded
strength limits are exceeded

 Caution
 Strain or Stress/Limit > 80%

 Extreme Caution
 Strain of Stress/Limit > 90%

 CRITICAL
 Strain of Stress/Limit > 100%

Microcracking Visable Cracking Elastic Limit Strength Limit

1

AWWA C-303							
Pipe Description:	Parley's 0	Canyon Pipeline - 24" BWP - Manh	ole 3				
				T			
Pipe Dimensions		1		ł	Design Conditions (AWWA C-303)	1	
Inside Diameter of the Pipe	D	32.25	in	l.	Design Pressure	Pd	
Outside Diameter of the Pipe	OD	35.2369	in		Operational Pressure	Pw	
Outside Diameter of Cylinder	Dy	33.80	in		Test Pressure	Pt	
Cylinder Thickness	ty	0.0747	in	0.875	Surge/Water Hammer Press. Ps		
Inner Mortar Thickness	tm	0.7	in	Ī	Live Load H-20		
Outer Coating Thickness	hmo	0.5	in	İ.	Live Load Impact Factor	lf	
Rebar Properties				t	Calculation		
Diameter of Bars	dw	0.21875	in	Ī	Area of Mortar	Am	
Bar Wrap Spacing	C-C	1.37	in	İ.	Area of Steel Cylinder	Ay	
Ultimate Strength of Rebars	fsu	72,500	psi	İ.	Weight of the Pipe	Wp	
Gross Wrapping Stress of Rebars	fsg	9,000	psi	Ī	Weight of Water	Ww	
Area of Bars	As	0.329	sq in/LF	Ī	W Dead (Earth Load) Marston Flexible Pipe	Wd_m	
				t			

Criteria											
Max Tensile Strength of Concrete	f't	470	0.104349839								
Max Tensile Strength of Mortar	f'tm	470									
Max Tensile Strain of Mortar	ɛ'tm	1.30E-04									
Max Tensile Strain of Concrete	٤ť	1.30E-04									
Concrete											
Microcracking	1.5*ɛť	******									
Visible Cracking	εk'	******									
Mortar											
Microcracking	6.4*ɛ'tm	******									
Visible Cracking	ε'km	1.038742E-03									

2.284405357 1.196268231

Notes Value from STD

** - ASTM A570 Grade 33 Steel (Ameron '88 & ASTM A570-79) *** - ASTM A615 Grade 40 Steel (Ameron '88 & ASTM A615-07) **** - From Mascod--Values range from 8,000 to 10,000

6* - From Elevations and HGL from Adam

Pipe Dimensions					De
Inside Diameter of the Pipe	D	32.25	in		Des
Outside Diameter of the Pipe	OD	35.2369	in		Opt
Outside Diameter of Cylinder	Dy	33.80	in		Tes
Cylinder Thickness	ty	0.0747	in	0.875	Sur
Inner Mortar Thickness	tm	0.7	in		Liv
Outer Coating Thickness	hmo	0.5	in		Live
Rebar Properties					Cal
Diameter of Bars	dw	0.21875	in		Are
Bar Wrap Spacing	C-C	1.37	in		Are
Ultimate Strength of Rebars	fsu	72,500	psi		We
Gross Wrapping Stress of Rebars	fsg	9,000	psi		We
Area of Bars	As	0.329	sq in/LF		W I
Concrete Properties					W I
Concrete Core	f'c	4500	psi		W I
Coating Mortar	fm	4500	psi		WI
Soil & Bedding Properties					Ver
Height of Maximum Earth Cover	н	2	ft		Ver
Soil Density	γs	120	lb/cft		Ma
Coeff. of Lateral Earth Pressure	Kμ'	0.165			Ma:
Clearance(Pipe & Trench Wall)	x	1	ft*		Ho
Bedding Factor (Load Factor)	Lf	1.00			Ho
Bedding Angle	α	45			Circ
Transition Width	Tw	4.8	ft		Circ
		Coarse Grained with Fines (SM,			
Unified Classification Soil Type	ST	SC)			Circ
Relative Compaction	Com	Slight Density			Circ
Trench Width	Bd	3.94	ft		Bur
Constants					
Design E of Steel Cylinder	Es	30,000,000	psi		_
Yield Strength of Cylinder	fyy	33,000	psi		Sp
Ultimate Strength of Cylinder	fyu	52,000	psi		Hor
Steel Density	yst	489	lb/cft		
Concrete Density	γc	145	lb/cft		
Water Density	γw	62.4	lb/cft		
Modulus of soil passive resistance	E' (Esoil)	400	psi		Sp
Defelection lag factor	DI	1			Hor
E of Concrete	Ec	3.62E+06			_
E of Mortar	Em	3.62E+06			
Bedding constant	к	0.105			
Pipe Mean Radius	r_mean	16.871725	in		
El Uncracked	EI	941312.1716	lb.in^2		
	y'	0.718107643	in		
l of uncracked section	1	0.161965411	in^4		1
Steel volume fraction	Vf	0.083208244			1
	Eeq	5811809.855	psi		
I of cracked section	I_crack	0.040491353	in^4		

		Openaka Inc. 28-Jun-17 Openaka Job 2013.48		[
Design Conditions (AWWA C-303)					Criteria
Design Pressure	Pd	86	psi		Max Tensile Strength of
Operational Pressure	Pw	40	psi		Max Tensile Strength of
Test Pressure	Pt	126	psi		Max Tensile Strain of Mo
Surge/Water Hammer Press.	Psp/Pwh		psi		Max Tensile Strain of Co
Live Load H-20	1				Concrete
Live Load Impact Factor	lf	25%			Microcracking
Calculation					Visible Cracking
Area of Mortar	Am	14.40	sq in/LF		Mortar
Area of Steel Cylinder	Ay		sq in/LF		Microcracking
Weight of the Pipe	Wp	185.4	Ib/LF		Visible Cracking
Weight of Water	Ww	354.0	Ib/I F		
W Dead (Earth Load) Marston Flexible Pipe	Wdm	642.0			
W Dead (Earth Load) Prism Load	Wd_p	697.4	Ib/LF		
W Dead (Earth Load)	Wd	58.1			
W live (H-20+Impact Factor)	Wi		lb/in		
Vertical Load-Top	Pa	1.72	lb/in		SoilFluidWt
Vertical Load-Bottom	Pb	4.50			SoilPipeWt
Max-Lateral Soil Pressure	Pb	0.3282			Souripevvi
	ΔX Max	0.260			
Maximum allowable deflection Horizontal Deflection_uncracked		0.028			∆x Satisfied
Horizontal Deflection_cracked	Δx_crack	0.028			Δx Satisfied
Circumferential Steel stress (Pw)	fs_pw	6,589			fs_pw Satisfied
Circumferential Steel stress (Pw+Ps)	fs(Pw+Psg)	14,826	psi		fs(Pw+Psg) Satisfied
Circumferential Steel stress (Pd)	fs_pd	14,167			fs_pd Satisfied
Circumferential Steel stress (Pd+Ps) Burst Pressure	fs(Pd+Psg) Pb	22,404			fs(Pd+Psg) Satisfied
Spangler-Watkins Deflection Formula (with Horizental deflection of the pipe	internal pressure Δx	ə) 0.0	in		
4.04E+06		E'soil= 400	E'soil:	10 = 1000	
Cover (ft)	Uncracked	Cracked	Uncracked		
0.5	0.007	0.021			
1	0.014	0.042			
1.75	0.024	0.073			
2.75	0.038	0.114			
3.75	0.052	0.156			
4 75	0.066	0.197			
5.75	0.080	0.239			
6	0.083	0.249			
6.25	0.087	0.260			
6.5 6.75	0.090	0.270			
6.75 7	0.093	0.281			
7.25	0.100	0.301			
7.5	0.104	0.312			
7.875	0.109	0.327			
8.25	0.114	0.343			
8.625	0.119	0.359			
9 9.5625	0.125	0.374			
9.5625	0.132 0.138	0.397			
10	2.100	2.710			

Appendix C Detailed FEA Methodology

C. Detailed FEA Methodology

The AWWA C304 Design Standard is a comprehensive tool used for the design of PCCP; however, it is not directly applicable for the evaluation of PCCP with broken prestressing wire wraps. FEA is an accurate method for modeling complex geometry under different loading conditions. Recent developments in FEA and increased computational speed allow for the analysis of complex nonlinear problems, which is required to provide accurate models of PCCP with broken prestressing wire wraps.

The FEA model has been developed by Pure Technologies to determine the structural consequence of broken prestressing wire wraps, based on the AWWA C301 and AWWA C304 Design Standards, by utilizing pipe design specifications, design parameters, and the assumed current condition of the prestressing wire wraps. In the analysis, the model of a pipe is subjected to internal pressure, pipe and fluid weights, and external loads while varying the number of broken wire wraps. A performance curve, displaying the effects of broken wire wraps, is formulated and used to determine the number of broken wraps required for the pipe to exceed theoretical Limits. It should be noted that in performing the structural analysis, the values used in the models were taken directly from the provided specifications and the applicable AWWA C301 Design Standard.

Significant increases in internal pressure and external earth and live loads cause higher tensile and bending stresses in the pipe wall, which may lead to wire wrap breaks and increasing stress in the remaining, adjacent wire wraps. As the stress increases, more prestressing wire wraps break and the concrete core and steel cylinder are able to expand. This leads to load and stress redistribution in the pipe. To account for this change during the FEA, the prestressing wire, concrete core, and steel cylinder are modeled as a composite element to simulate the material interactions in an actual pipe. As the stress in the prestressing wire increases and the concrete core and steel cylinder are able to expand, the response of the composite element becomes increasingly nonlinear, adding further complexity to the model.

Commercial finite element software (ABAQUS) was used to investigate the response of a PCCP under different loading conditions. The FEA model predicts the performance limits of a PCCP utilizing the tensile strengths of the prestressing wire, the steel cylinder, and the concrete core, as well as a plasticity algorithm that simulates concrete crushing in compression regions. The behavior of the concrete is particularly complex to model as, in the field, either cracking or crushing may occur once the ultimate strength of the concrete is exceeded. Cracking and crushing are determined along a failure surface, with cracks appearing when the principle stresses at the surface are in tension and crushing occurring when the principle stresses are in compression. The concrete core of a PCCP is modeled as part of the three-dimensional composite element, with additional adjustments made to predict the failure of brittle materials.

Analyzing PCCP with broken prestressing wire wraps adds even more complexity to the model. Broken wire wraps change the load and stress distribution in the pipe. Once concrete in tension begins to crack, its load carrying ability begins to decrease with additional strain. If the strain is high enough, the load carrying ability goes to zero. This means that loads must be transferred through the other components of the pipe. Figure C.1 shows a schematic of the Stress-Strain behavior of concrete from the AWWA C304-07 Design Standard. ABAQUS modeling software, by using its sophisticated material models, can handle this complex condition.

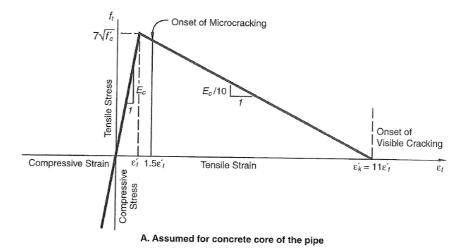


Figure C.1: Stress-Strain Relationship in the Concrete Core [2]

C.1 Performance Curve

The number of broken prestressing wire wraps that a particular pipe design will tolerate under operational and surge conditions can be determined using an FEA performance curve. An example of a performance curve for PCCP is shown in Figure C.2. Pure Technologies uses four (4) Limits, Micro Cracking (blue), Visible Cracking (green), Yield (yellow), and Strength (red), to classify the condition of a distressed PCCP. Note that although they have similar descriptions and values, these Limits are different from the Limits and Limiting Criteria used in the AWWA C304 analysis.

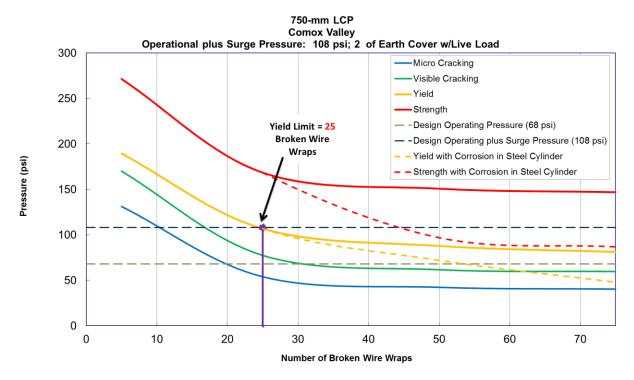


Figure C.2: Performance Curve for the 750-mm LCP in the CPS Force Main, with 2-feet of earth cover and live load (On-land Section)

Table C.1 defines the Limits used by Pure Technologies to describe the predicted condition of a PCCP with a known quantity of broken wire wraps. The actual number of broken wire wraps required to reach these conditions varies according to the pipe design and earth cover. These terms are referred to and used consistently throughout this report.

Table C.1:	Table C.1: Predicted Condition of a Pipe with Broken Wire Wraps											
Limit	Description											
Micro Cracking	Micro cracking of the mortar coating or concrete core (defined by the strain associated with a crack that is \geq 0.001 inches wide)											
Visible Cracking	Visible cracking of the mortar coating or concrete core (defined by the strain associated with a crack that is \geq 0.002 inches wide)											
Yield	Prestressing wire or steel cylinder reach their yield strength											
Strength	Prestressing wire or steel cylinder reach their ultimate tensile strength											

The Serviceability Limit described in AWWA C304 is represented in the performance curves by the Micro Cracking and Visible Cracking Limits. A pipe reaches the Micro Cracking Limit when strain in the mortar coating or concrete core exceeds the AWWA C304 tensile strain limit for micro cracking. Micro cracking in the mortar coating or concrete core is described as cracks greater than 0.0254 mm wide and 300 mm in length and can be considered the preliminary level of

damage in a PCCP. The Visible Cracking Limit is reached when the mortar coating or concrete core reach the strain associated with cracks greater than 0.0508 mm wide and 300 mm in length.

When the mortar coating on the exterior of the pipe cracks, chloride ions present in the water may seep through the cracks, exposing the prestressing wire wraps to a corrosive environment. Corrosion can reduce the cross-sectional area of the prestressing wire, decreasing its load carrying ability and causing the wire wraps to break as the stress is increased. Individual wire wrap breaks also increase the amount of stress placed on the adjacent wire wraps. This increasing stress, as well as a persisting corrosive environment, will cause the adjacent wraps to break. While a long period may pass between initial and subsequent breaks, eventually the wire wraps will begin to fail at a faster rate as more stress is placed on the remaining wire wraps.

Prior to reaching the Yield Limit, the prestressing wire and steel cylinder are able to elongate and deform elastically, meaning that after the load is removed, they return to their original shape. Once the Yield Limit is reached in the steel cylinder, it undergoes plastic deformation, where it experiences large amounts of strain (elongation) in response to a relatively small increase in applied stress. The Strength Limit for the steel cylinder is the point at which the steel begins to elongate while experiencing lower stresses. This condition is also known as necking and it immediately precedes the failure of the steel cylinder. The elongation experienced by the prestressing wire wraps due to loading beyond the Yield Limit eventually causes an individual wrap to break. The prestressing wire has a relatively brittle behavior compared to the steel cylinder, meaning that the wire wraps undergo less plastic deformation before they break. This situation often occurs simultaneously in adjacent wire wraps, especially as more prestressing wire wraps break and the stress in the remaining wraps increases in response. Additionally, as more wire wrap breaks occur, the concrete core and steel cylinder are able to expand in response to the internal pressure. As the core expands, the concrete is placed in tension, which can cause structural cracking in the core if the stress becomes high enough.

The values used to represent the performance of the steel components in the field are based on the yield and ultimate strengths provided on the pipe design specifications sheet or the standard values in the relevant design standard, if the pipe design is not available. The yield strength for the prestressing wire is typically 85% of its ultimate strength, while the yield strength of the steel cylinder is either denoted on the pipe design specification sheet or taken from the Design Standard in place at the time of production. The Yield Limit will be reached when either the steel cylinder or the prestressing wire reach its yield strength. The ultimate strength of the prestressing wire is dictated by the gage and class of the wire, while the ultimate strength of the steel cylinder is determined by the grade of the steel. The Strength Limit is exceeded when one of the PCCP components reaches its ultimate strength, which, theoretically, will cause the failure of the pipe.

By evaluating the predicted structural condition of a pipe using FEA and analyzing all critical variables, a risk assessment of all distressed pipes can be performed to determine if and when a particular pipe should be rehabilitated.

C.2 Variables that Affect the FEA

Part of the structural analysis is to evaluate the risk of PCCP structural failure due to reduced structural capacity caused by broken prestressing wire wraps and concrete deterioration. The prestressing wire is a principal structural component of prestressed pipe and each class of pipe installed in a particular pipeline is designed specifically for the maximum hydraulic operating pressure and earth covers expected along the route. Thus, any amount of broken wire wraps poses some level of risk to the pipeline and should be carefully evaluated.

It is important to recognize that the structural analysis is subject to several complex variables that cannot be modeled with 100% certainty. In order to evaluate the modeling results and to make recommendations on how to manage the pipeline, it is important to understand the variables affecting the structural model and their associated risk. The primary variables affecting the FEA are detailed below.

C.2.1 Effects of Cover

Earth cover plays a significant role in the number of broken prestressing wire wraps that a pipe will tolerate. PCCP is designed based on a combined load design method where increasing the depth of earth cover over a pipe originally designed for a specific combination of pressure and earth cover has the effect of reducing the pipe's capacity for internal operating pressure. For instance, if a pipe were originally designed for a working pressure of 100 psi and an earth cover of 3 meters, the allowable internal pressure would be reduced if the earth cover over the pipe were increased over the design earth cover.

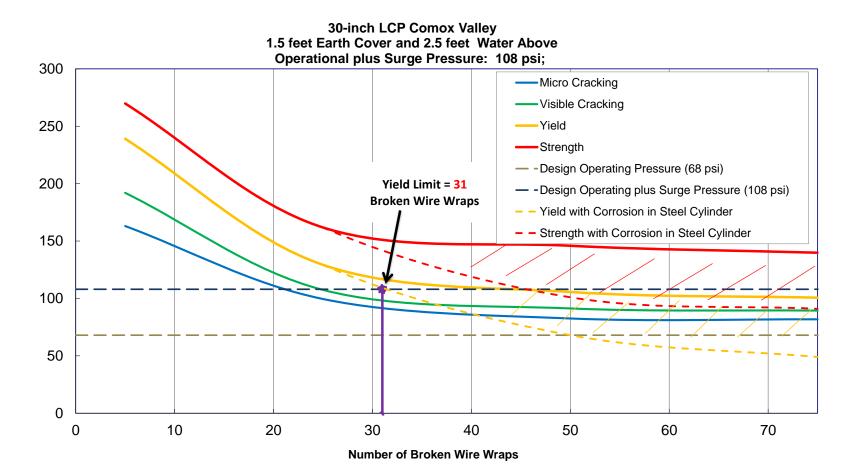
Earth loads tend to apply flexural stresses to the extreme fibers of the concrete core at the springline, invert, and crown. High earth loads due to deep earth covers will impose high flexural stresses on the pipe's concrete core. Under very high earth covers and relatively low internal pressures, prestressed pipe design is typically controlled by the external load. This situation often requires a thicker than standard concrete core to tolerate the high flexural stresses. The current AWWA C304 design method is especially sensitive to external loading and this directly affects the results of a finite element analysis.

C.2.2 Effects of Wire Bond

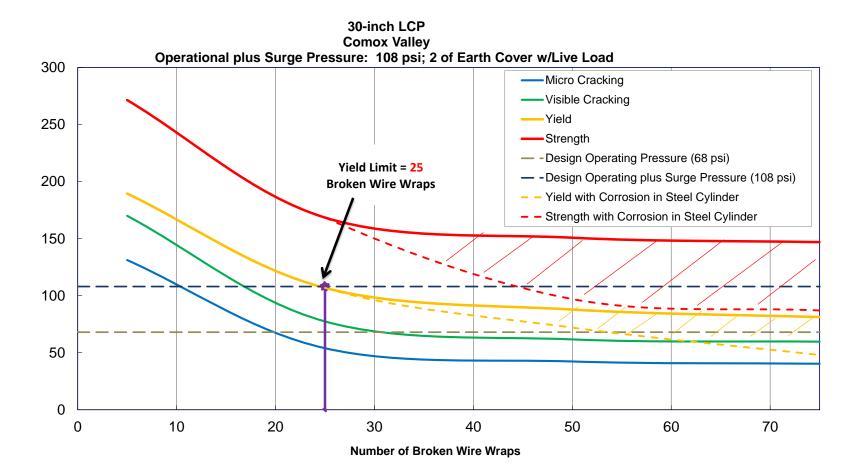
When a prestressing wire wrap breaks, its tension is completely released at the point of breakage. The ends of the wire retract and are subjected to the friction forces applied to the wire by the mortar coating and the concrete core. These friction forces enable the wire to redevelop its tension over a relatively short distance from the point of breakage. The redevelopment length can vary up to several feet depending on the prestressing wire's class and diameter as well as the condition and quality of the mortar coating. A sound mortar coating may not experience any delamination following a wire wrap break and if the prestressing wire breaks and quickly redevelops its tension, the structural consequence of the break is minimal. Conversely, a poor quality mortar coating may

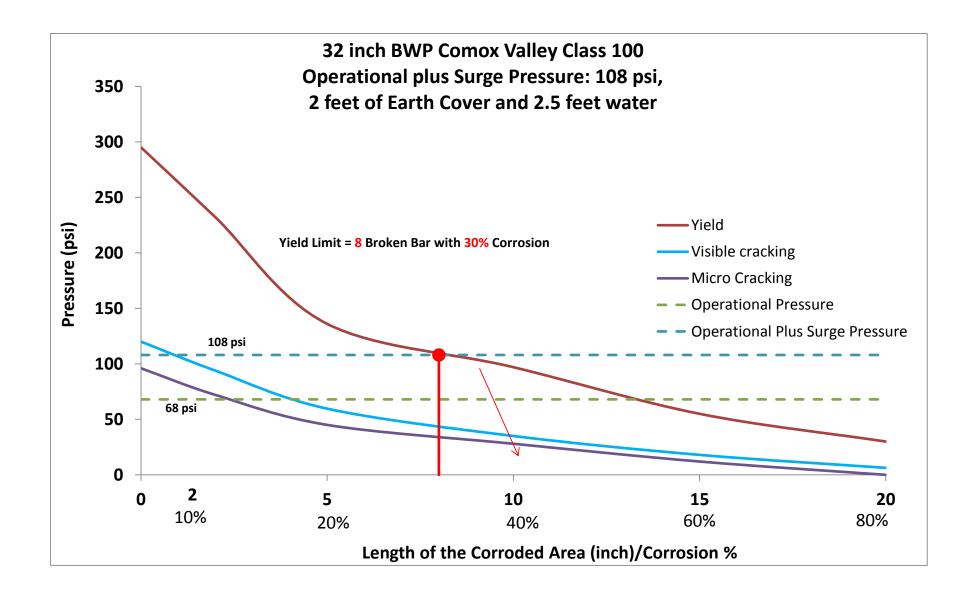
crack or deteriorate following a wire wrap break and, in this case, the redevelopment length would be significantly longer.

For a specific wire diameter and class, the primary variable affecting the redevelopment length is the wire's bond to the mortar coating. If the coating is hard and remains well attached to the concrete core, wire bond will remain high and full tension in the wire will redevelop in a short distance from the point of breakage. When the coating becomes soft, cracks, or is delaminated from the core, the wire bond is reduced and the redevelopment length is increased significantly. Also, if the mortar is under attack by aggressive soil and groundwater conditions surrounding the pipeline, wire bond is reduced.


In the field, a severely damaged pipe may not experience a catastrophic failure because wire bond is holding the pipe together. Since it is not practical to understand the actual wire bond for each wire wrap, a conservative assumption must be made for the FEA. The most conservative assumption for finite element analysis is to remove the broken wire wraps from the model all together; meaning that the Strength Limit on a performance curve will be reached at the ultimate strength limits of the PCCP components.

C.3 Field Observations vs. Predicted Results


It is Pure Technologies' recommendation that caution be used when viewing the performance curves produced by the FEA. These curves are useful for evaluating the structural capacity of a distressed PCCP, but modeling a complex condition like broken wire wraps is not an exact science. When opportunities arise to excavate and inspect pipes in the field, the actual condition should be compared to the estimated number of broken wire wraps, as well as the predicted results from the structural model, to determine if they are consistent with the observed conditions.


During previous excavations of prestressed concrete cylinder pipes, it has been observed that structural models generally produce results that are conservative. This level of conservatism is important because it provides allowances for extraordinary circumstances. Although a pipe can tolerate more broken prestressing wire wraps prior to reaching a particular Limit, the risk of failure can be alleviated by actively managing the pipeline.

Appendix D FEA Curves

Pressure (psi)

Comox Valley Regional District 750/820-Millimetre Courtenay Pump Station Force Main

							.			Inspection Results			
Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station	Pipe Length (metres) ad	High Station	Reported Class	xhibit Electromagnetic Break Region Location (metres from Low Station)	Number of Broken Wire or Bar Wraps by Region	Total Number of Broken Wire or Bar Wraps	Layout	Comments
1	S5	N/A	750	LCP	N/A	7.3	Inse N/A	N/A	: Towards 20-inch Ac	cess at Courtena	ay Pump Statio	n	Drawings not available. Suspected steel pipe. Pipe
2	S5	, N/A	750	LCP	N/A	7.3	, N/A	, N/A					reported with less certainty. Drawings not available. Suspected steel pipe. Pipe
3	S5	N/A	750	LCP	N/A	7.3	0+000	N/A					reported with less certainty. Drawings not available. Suspected steel pipe. Pipe reported with less certainty.
4	S5 S5	72 45	750 750	LCP LCP	0+000 0+001	1.0 7.3	0+001 0+008	B 10					reported with less certainty.
6 7	S5 S5	45 45 45	750 750	LCP LCP LCP	0+001 0+008 0+016	7.3	0+016 0+023	10 10 10					
8	S5 S5	71 70	750 750	LCP LCP	0+023 0+025	1.8 2.9	0+025 0+028	B				WYE	750 x 750 x 750mm WYE @ Station 0+025.
10	S5	69	750	LCP	0+028	3.0	0+032	10					4m SP in pipe laying schedules. Data indicates 3m SP.
11	S5	N/A	750	LCP	N/A	1.0	N/A	10					Not listed in pipe laying schedules. Data indicates ~1m SP.
12	S5	N/A	750	LCP	N/A	2.5	N/A	10					Not listed in pipe laying schedules. Data indicates ~2.5m SP.
13	S5	45	750	LCP	0+032	4.0	0+039	10					7.3m STD in pipe laying schedules. Data indicates 4m SP.
14 15	S5 S5	45 45	750 750	LCP LCP	0+039 0+046	7.3 7.3	0+046 0+053	10 10					
16 17	S5 S5	45 45	750 750	LCP LCP	0+053 0+061	7.3 7.3	0+061 0+068	10 10					_
18 19	S5 S5	44 STD	750 750	LCP LCP	0+068 0+075	7.3 7.3	0+075 0+082	10 10					
20 21	S5 S5	STD STD	750 750	LCP LCP	0+082 0+089	7.3 7.3	0+089 0+097	10 10				A	Anomalous signal from 3.3-7.3m.
22 23	S5 S5	STD STD	750 750	LCP LCP	0+097 0+104	7.3 7.3	0+104 0+111	10 10					
24 25	S5 S5	STD STD	750 750	LCP LCP	0+111 0+118	7.3 7.3	0+118 0+126	10 10					
26 27	S5 S5	STD STD	750 750	LCP LCP	0+126 0+133	7.3 7.3	0+133 0+140	10 10				A	Anomalous signal from 4.6-7.3m.
28 29	S5 S5	STD STD	750 750	LCP LCP	0+140 0+147	7.3 7.3	0+147 0+154	10 10					
30 31	S5 S5	68 40	750 750	LCP LCP	0+154 0+157	2.6 7.4	0+157 0+164	10 10					
32 33	S5 S5	40	750	LCP LCP	0+164 0+172	7.4	0+172	10 10					
34 35	S5 S5	40	750	LCP LCP	0+179 0+187	7.4	0+187 0+194	10 10					
36 37	S5 S5	40 40	750	LCP LCP	0+194 0+201	7.4	0+201 0+209	10 10					
38 39	S5 S5	67 STD	750 750	LCP LCP	0+209 0+216	7.4	0+216	10 10					
40 41 42	S5 S5	STD STD	750 750	LCP LCP	0+224 0+231	7.3	0+231 0+238	10 10					
42 43 44	S5 S5 S5	STD STD STD	750 750 750	LCP LCP LCP	0+238 0+246	7.3	0+246 0+253 0+260	10 10 10					
44 45 46	S5 S5 S5	STD STD STD	750 750 750	LCP LCP LCP	0+253 0+260 0+267	7.3 7.3 7.3	0+260 0+267 0+275	10 10 10					
40 47 48	S5 S5	STD STD STD	750 750	LCP LCP LCP	0+275 0+282	7.3	0+273 0+282 0+289	10 10 10					
49	S5 S5	STD STD	750 750	LCP LCP	0+282 0+289 0+297	7.3	0+289 0+297 0+304	10 10 10					
50 51 52	S5 S5	STD STD STD	750 750 750	LCP LCP LCP	0+297 0+304 0+311	7.3	0+304 0+311 0+319	10 10 10					
52 53 54	S5 S5	STD STD 66A	750 750 750	LCP LCP LCP	0+311 0+319 0+326	7.3	0+319 0+326 0+333	10 10 10					
55 56	S5 S5 S5	STD 66	750 750 750	LCP LCP LCP	0+320 0+333 0+340	7.3	0+333 0+340 0+341	10 10 B					
57 58	S5 S5	N/A 65	750 750	LCP LCP	0+341 0+350	9.0 2.3	0+350 0+353	N/A B				TEE	Steel. Access Hatch #1. 500mm TEE @ Station 0+352.
59 60	S5 S5	64 63	750 750	LCP LCP	0+353 0+357	4.0	0+357 0+359	10 10				AV	100mm AV @ Station 0+354.
61	S5	N/A	750	LCP	N/A	2.5	N/A	N/A					Not listed in pipe laying schedules. Data indicates ~2.5m SP.
62 63	S5 S5	43 62	750 750	LCP LCP	0+359 0+367	7.3 1.1	0+367 0+368	10 B					
64 65	S5 S5	61 44	750 750	LCP LCP	0+368 0+370	2.5	0+300 0+370 0+377	10 10					
66 67	S5 S5	STD STD	750 750	LCP LCP	0+377 0+385	7.3 7.3	0+385 0+392	10 10					
68 69	S5 S5	STD STD	750 750	LCP LCP	0+392 0+399	7.3	0+399 0+407	10 10					
70 71	S5 S5	STD STD	750 750	LCP LCP	0+407 0+414	7.3	0+414 0+421	10 10 10					
72	S5 S5	60 STD	750 750	LCP LCP	0+421 0+425	3.6 7.3	0+425	10 10 10					
74 75	S5 S5	STD STD	750 750	LCP LCP	0+432 0+440	7.3	0+440	10 10					
76 77	S5 S5	STD STD	750 750	LCP LCP	0+447 0+454	7.3	0+454 0+462	10 10					
78 79	S5 S5	STD STD	750 750	LCP LCP	0+462 0+469	7.3 7.3	0+469 0+476	10					
						• • •							-

Comox Valley Regional District 750/820-Millimetre Courtenay Pump Station Force Main

Electromagnetic Inspection Results

						Pipe	Sections	that E	xhibit Electromagnetic	Inspection Results	ent with Broken V	Vire Wr	an	s
Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station	Pipe Length (metres)	High Station	Reported Class	Break Region Location (metres from Low Station)	Number of Broken Wire or Bar Wraps by Region	Total Number of Broken Wire or Bar Wraps	Layout		Comments
80	S5	STD	750	LCP	0+476	7.3	0+484	10						
81 82	S5 S5	STD STD	750 750	LCP LCP	0+484 0+491	7.3 7.3	0+491 0+498	10 10						
83	S5	STD	750	LCP	0+498	7.3	0+506	10						
84 85	S5 S5	STD STD	750 750	LCP LCP	0+506 0+513	7.3 7.3	0+513 0+520	10 10						
86 87	S5 S5	STD STD	750 750	LCP LCP	0+520 0+527	7.3 7.3	0+527 0+535	10 10						
88	S5	STD	750	LCP	0+535	7.3	0+542	10						
89 90	S5 S5	STD STD	750 750	LCP LCP	0+542 0+549	7.3 7.3	0+549 0+557	10 10				_		
91	S5	STD	750	LCP	0+557	7.3	0+564	10						
92 93	S5 S5	STD STD	750 750	LCP LCP	0+564 0+571	7.3 7.3	0+571 0+579	10 10				-		
94 95	S5 S5	STD	750 750	LCP LCP	0+579 0+586	7.3 7.3	0+586 0+593	10 10						
96	S5	STD STD	750	LCP	0+593	7.3	0+601	10						
97 98	S5 S5	STD STD	750 750	LCP LCP	0+601 0+608	7.3 7.3	0+608 0+615	10 10				_		
99	S5	STD	750	LCP	0+615	7.3	0+623	10						
100 101	S5 S5	STD STD	750 750	LCP LCP	0+623 0+630	7.3 7.3	0+630 0+637	10 10				-		
102	S5	STD	750	LCP	0+637	7.3	0+645	10					11	
103 104	S5 S5	43 45	750 750	LCP LCP	0+645 0+652	7.3 7.3	0+652 0+004	10 10					H	Equation: 0+654.772BK=0+000.000AH.
105 106	S5 S5	45 45	750 750	LCP LCP	0+004 0+012	7.3 7.3	0+012 0+019	10 10				_	П	
107	S5	45	750	LCP	0+019	7.3	0+026	10						
108 109	S5 S5	45 45	750 750	LCP LCP	0+026 0+034	7.3 7.3	0+034 0+041	10 10				_		
110	S5	45	750	LCP	0+041	7.3	0+048	10						
111 112	S5 S5	45 45	750 750	LCP LCP	0+048 0+056	7.3 7.3	0+056 0+063	10 10					Н	
113	S5	45	750	LCP	0+063	7.3	0+070	10				_		
114 115	S5 S5	45 45	750 750	LCP LCP	0+070 0+078	7.3 7.3	0+078 0+085	10 10						
116 117	S5 S5	45 45	750 750	LCP LCP	0+085 0+092	7.3 7.3	0+092 0+100	10 10						
118	S5	45	750	LCP	0+100	7.3	0+107	10						
119 120	S5 S5	45 44	750 750	LCP LCP	0+107 0+114	7.3 7.3	0+114 0+122	10 10				_		
121	S5	STD	750	LCP	0+122	7.3	0+129	10						
122 123	S5 S5	STD STD	750 750	LCP LCP	0+129 0+136	7.3 7.3	0+136 0+144	10 10						
124 125	S5 S5	STD STD	750 750	LCP LCP	0+144 0+151	7.3 7.3	0+151 0+158	10 10						
126	S5	STD	750	LCP	0+158	7.3	0+166	10						
127 128	S5 S5	STD STD	750 750	LCP LCP	0+166 0+173	7.3 7.3	0+173 0+180	10 10				_		
129	S5	STD	750	LCP	0+180	7.3	0+188	10						
130 131	S5 S5	STD STD	750 750	LCP LCP	0+188 0+195	7.3 7.3	0+195 0+202	10 10						
132 133	S5 S5	STD STD	750 750	LCP LCP	0+202 0+209	7.3 7.3	0+209 0+217	10 10						
134	S5	STD	750	LCP	0+217	7.3	0+224	10						
135	S5	33	750	LCP	0+224	7.4	0+232	10						Access Hatch #2. 500mm TEE and 200mm BO @
136	S5	59	750	LCP	0+232	2.0	0+234	В				TEE		Station 0+233.
137 138	S5 S5	58 40	750 750	LCP LCP	0+234 0+238	4.3 7.4	0+238 0+245	10 10					H	
139 140	S5 S5	40 40	750 750	LCP LCP	0+245 0+253	7.4 7.4	0+253 0+260	10 10					П	
141	S5	40	750	LCP	0+260	7.4	0+267	10						
142 143	S5 S5	33 STD	750 750	LCP LCP	0+267 0+275	7.4	0+275 0+282	10 10				-	$\ $	
144	S5	STD	750	LCP	0+282	7.3	0+290	10				_		
145 146	S5 S5	STD STD	750 750	LCP LCP	0+290 0+297	7.3 7.3	0+297 0+304	10 10					H	
147 148	S5 S5	STD STD	750 750	LCP LCP	0+304 0+311	7.3 7.3	0+311 0+319	10 10				_	П	
149	S5	STD	750	LCP	0+319	7.3	0+326	10						
150 151	S5 S5	STD STD	750 750	LCP LCP	0+326 0+333	7.3	0+333 0+341	10 10					$\ $	
152	S5	STD	750	LCP	0+341	7.3	0+348	10				_		
153 154	S5 S5	STD STD	750 750	LCP LCP	0+348 0+355	7.3 7.3	0+355 0+363	10 10					IJ	
155 156	S5 S5	STD STD	750 750	LCP LCP	0+363 0+370	7.3 7.3	0+370 0+377	10 10				_	$\ $	
157	S5	STD	750	LCP	0+377	7.3	0+385	10						
158 159	S5 S5	STD STD	750 750	LCP LCP	0+385 0+392	7.3 7.3	0+392 0+399	10 10					$\ $	
160	S5	STD	750	LCP	0+399	7.3	0+407	10 10				_	П	
161 162	S5 S5	STD STD	750 750	LCP LCP	0+407 0+414	7.3 7.3	0+414 0+421	10					IJ	
163 164	S5 S5	STD STD	750 750	LCP LCP	0+421 0+429	7.3 7.3	0+429 0+436	10 10				_	$\ $	
165	S5	STD	750	LCP	0+436	7.3	0+443	10					Ħ	
166	S5	STD	750	LCP	0+443	7.3	0+451	10						

						Pipe	Sections	that E	Electromagnetic xhibit Electromagnetic	Inspection Results Anomalies Consiste	ent with Broken \	Nire Wran	os
Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station	Pipe Length (metres)	High Station	Reported Class	Break Region Location (metres from Low Station)	Number of Broken Wire or Bar Wraps by Region	Total Number of Broken Wire or Bar Wraps	Layout	Comments
167 168 169 170 171 172 173 174 175 176 177	S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5	STD STD STD STD STD STD STD STD STD STD	750 750 750 750 750 750 750 750 750 750	LCP LCP LCP LCP LCP LCP LCP LCP LCP LCP	0+451 0+458 0+465 0+473 0+480 0+487 0+494 0+502 0+509 0+516 0+524	7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	0+458 0+465 0+473 0+480 0+487 0+494 0+502 0+509 0+516 0+524 0+531	10 10 10 10 10 10 10 10 10 10 10					
178 179 180 181 182 183 184 185 186 187	S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5	STD STD 33 31 31 31 31 31 31 31 31 31	750 750 750 750 750 750 750 750 750 750	LCP LCP LCP LCP LCP LCP LCP LCP LCP LCP	0+531 0+538 0+546 0+553 0+560 0+568 0+575 0+583 0+590 0+598	7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	0+538 0+546 0+553 0+560 0+568 0+575 0+583 0+590 0+598 0+605	10 10 10 10 10 10 10 10 10 10 10				A	Anomalous signal from 0.0-2.5m.
188 189 190 191 192 193 194 195 196 197 198	S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5	31 31 31 57 STD STD STD STD STD 43	750 750 750 750 750 750 750 750 750 750	LCP LCP LCP LCP LCP LCP LCP LCP LCP LCP	0+605 0+612 0+620 0+635 0+635 0+636 0+643 0+651 0+658 0+665 0+672	7.4 7.4 7.4 1.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	0+612 0+620 0+627 0+635 0+636 0+643 0+651 0+658 0+665 0+665 0+672 0+680	10 10 10 10 10 10 10 10 10 10 10					
199 200 201 202 203 204 205 206 207 208	S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5	56 55 STD STD STD STD STD STD STD STD	750 750 750 750 750 750 750 750 750 750	LCP LCP LCP LCP LCP LCP LCP LCP LCP LCP	0+680 0+001 0+005 0+012 0+019 0+027 0+034 0+041 0+049 0+056	1.1 4.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	0+001 0+005 0+012 0+019 0+027 0+034 0+041 0+049 0+056 0+063	B 10 10 10 10 10 10 10 10 10 10					Equation: 0+680.386BK=0+000.000AH.
209 210 211 212 213 214 215 216 217	S5 S5 S5 S5 S5 S5 S5 S5 S5 S5	STD 43 54 53 STD STD STD STD STD STD	750 750 750 750 750 750 750 750 750 750	LCP LCP LCP LCP LCP LCP LCP LCP LCP LCP	0+063 0+071 0+078 0+079 0+081 0+089 0+096 0+103 0+111	7.3 7.3 1.1 2.1 2.0 7.3 7.3 7.3 7.3 7.3	0+071 0+078 0+079 0+081 0+089 0+096 0+103 0+111 0+118	10 10 B 10 10 10 10 10 10					7.3m STD in pipe laying schedules. Data indicates 2.0m-500m TEE (Access Hatch #3).
218 219 220 221 222 223 224 225 226	S5 S5 S5 S5 S5 S5 S5 S5 S5 S5	STD STD STD STD STD 26 STD STD STD	750 750 750 750 750 750 750 750 750 750	LCP LCP LCP LCP LCP LCP LCP LCP LCP	0+118 0+125 0+133 0+140 0+147 0+155 0+155 0+156 0+164 0+171	7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	0+125 0+133 0+140 0+147 0+155 0+156 0+164 0+171 0+178	10 10 10 10 10 B 10 10 10					2.0m-500mm TEE in pipe laying schedules. Data indicates 7.3m STD.
227 228 229 230 231 232 233 234 235 236 236	S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5	STD STD STD STD STD STD STD STD STD STD	750 750 750 750 750 750 750 750 750 750	LCP LCP LCP LCP LCP LCP LCP LCP LCP	0+178 0+186 0+193 0+200 0+208 0+215 0+222 0+230 0+237 0+237 0+244	7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	0+186 0+193 0+200 0+208 0+215 0+222 0+230 0+237 0+244 0+252	10 10 10 10 10 10 10 10 10 10					
237 238 239 240 241 242 243 244 245 246	S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5	STD STD STD STD STD STD STD STD STD STD	750 750 750 750 750 750 750 750 750 750	LCP LCP LCP LCP LCP LCP LCP LCP LCP LCP	0+252 0+259 0+266 0+274 0+281 0+288 0+296 0+303 0+310 0+318	7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	0+259 0+266 0+274 0+281 0+288 0+296 0+303 0+310 0+318 0+325	10 10 10 10 10 10 10 10 10 10					
247 248 249 250 251 252	S5 S5 S5 S5 S5 S5	STD STD STD STD STD STD	750 750 750 750 750 750 750	LCP LCP LCP LCP LCP LCP	0+325 0+332 0+340 0+347 0+354 0+361	7.3 7.3 7.3 7.3 7.3 7.3 7.3	0+332 0+340 0+347 0+354 0+361 0+369	10 10 10 10 10 10					

						Pipe	Sections	that E	xhibit Electromagnetic	Inspection Results Anomalies Consiste	ent with Broken	Wire Wra	ps
Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station	Pipe Length (metres)	High Station	Reported Class	Break Region Location (metres from Low Station)	Number of Broken Wire or Bar Wraps by Region	Total Number of Broken Wire or Bar Wraps	Layout	Comments
b c b c <thc< th=""> <thc> c c</thc></thc<>	4 TPERING 55	Nu Bit STD STD STD	Big Big 750 750 750	- and 2 <td>B B 0+369 0+376 0+398 0+405 0+413 0+420 0+427 0+427 0+427 0+4420 0+4421 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+445 0+456 0+552 0+552 0+552 0+552 0+552 0+552 0+563 0+564 0+662 0+662 0+662 0+662 0+662 0+000 0+0015 0+0026 0+0410 0+0426 0+0427 0+1070<!--</td--><td>P E 8 8 7.3 7.3 7.3 <</td><td>S S 0+376 0+383 0+391 0+398 0+405 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+445 0+442 0+445 0+451 0+451 0+4551 0+553 0+553 0+553 0+553 0+553 0+555 0+553 0+555 0+552 0+555 0+552 0+555 0+552 0+552 0+552 0+555 0+552 0+556 0+603 0+610 0+662 0+662 0+662 0+662 0+662 0+662 0+662 0+663 0+662 0+6647 0+662 0+662 0+662 0+0415 0+662 0+0415 0+662 0+041 0+104 0+041 0+104 0+1070</td><td>Base 10</td><td></td><td></td><td></td><td></td><td>Comments Comments Com</td></td>	B B 0+369 0+376 0+398 0+405 0+413 0+420 0+427 0+427 0+427 0+4420 0+4421 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+445 0+456 0+552 0+552 0+552 0+552 0+552 0+552 0+563 0+564 0+662 0+662 0+662 0+662 0+662 0+000 0+0015 0+0026 0+0410 0+0426 0+0427 0+1070 </td <td>P E 8 8 7.3 7.3 7.3 <</td> <td>S S 0+376 0+383 0+391 0+398 0+405 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+445 0+442 0+445 0+451 0+451 0+4551 0+553 0+553 0+553 0+553 0+553 0+555 0+553 0+555 0+552 0+555 0+552 0+555 0+552 0+552 0+552 0+555 0+552 0+556 0+603 0+610 0+662 0+662 0+662 0+662 0+662 0+662 0+662 0+663 0+662 0+6647 0+662 0+662 0+662 0+0415 0+662 0+0415 0+662 0+041 0+104 0+041 0+104 0+1070</td> <td>Base 10</td> <td></td> <td></td> <td></td> <td></td> <td>Comments Comments Com</td>	P E 8 8 7.3 7.3 7.3 <	S S 0+376 0+383 0+391 0+398 0+405 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+442 0+445 0+442 0+445 0+451 0+451 0+4551 0+553 0+553 0+553 0+553 0+553 0+555 0+553 0+555 0+552 0+555 0+552 0+555 0+552 0+552 0+552 0+555 0+552 0+556 0+603 0+610 0+662 0+662 0+662 0+662 0+662 0+662 0+662 0+663 0+662 0+6647 0+662 0+662 0+662 0+0415 0+662 0+0415 0+662 0+041 0+104 0+041 0+104 0+1070	Base 10					Comments Com
331 332 333 334 335	S5 S5 S5 S5 S5	STD STD 43 N/A 42	750 750 750 750 750	LCP LCP LCP LCP	0+225 0+233 0+240 N/A 0+247	7.3 7.3 7.3 7.3 7.3 1.8	0+233 0+240 0+247 N/A 0+249	10 10 10 N/A B					Not listed in pipe laying schedules. Data indicates 7.3m STD.

						Pipe	Sections	that F	xhibit Electromagnetic	Inspection Results Anomalies Consiste	ent with Broken \	Nire Wra	ps
Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station	Pipe Length (metres)	High Station	Reported Class	Break Region Location (metres from Low Station)	Number of Broken Wire or Bar Wraps by Region	Total Number of Broken Wire or Bar Wraps	Layout	Comments
336	S5	41	750	LCP	0+249	6.0	0+255	10					
337 338	S5 S5	40 40	750 750	LCP LCP	0+255 0+263	7.4 7.4	0+263 0+270	10 10				_	
339	S5	40	750	LCP	0+270	7.4	0+277	10					
340 341	S5 S5	40 40	750 750	LCP LCP	0+277 0+285	7.4 7.4	0+285 0+292	10 10					
342	S5	40	750	LCP	0+292	7.4	0+300	10					
343 344	S5 S5	40 40	750 750	LCP LCP	0+300 0+307	7.4 7.4	0+307 0+314	10 10					
345	S5	40	750	LCP	0+314	7.4	0+322	10					
346 347	S5 S5	40 40	750 750	LCP LCP	0+322 0+329	7.4 7.4	0+329 0+337	10 10					
348	S5	40	750	LCP	0+329	7.4	0+344	10					
349	S5 S5	39 STD	750	LCP LCP	0+344	3.0 7.3	0+347 0+354	10 10					
350 351	S5	STD	750 750	LCP	0+347 0+354	7.3	0+354	10					
352	S5 S5	STD	750	LCP	0+362	7.3	0+369	10 10					
353 354	S5	STD STD	750 750	LCP LCP	0+369 0+376	7.3 7.3	0+376 0+384	10					
355 356	S5 S5	STD STD	750 750	LCP LCP	0+384 0+391	7.3 7.3	0+391 0+398	10 10					
357	S5	STD	750	LCP	0+391	7.3	0+398	10					
358	S5	STD	750	LCP LCP	0+406	7.3	0+413	10					
359 360	S5 S5	STD STD	750 750	LCP	0+413 0+420	7.3 7.3	0+420 0+428	10 10					
361 362	S5 S5	STD STD	750 750	LCP LCP	0+428 0+435	7.3 7.3	0+435 0+442	10 10					
363	S5	STD	750	LCP	0+433	7.3	0+450	10					
364	S5 S5	STD STD	750 750	LCP LCP	0+450 0+457	7.3 7.3	0+457	10				_	
365 366	S5	STD	750	LCP	0+457	7.3	0+464 0+472	10 10					
367	S5	STD	750	LCP	0+472	7.3	0+479	10					
368 369	S5 S5	STD STD	750 750	LCP LCP	0+479 0+486	7.3 7.3	0+486 0+494	10 10					
370	S5	STD	750	LCP	0+494	7.3	0+501	10					
371 372	S5 S5	STD STD	750 750	LCP LCP	0+501 0+508	7.3 7.3	0+508 0+515	10 10					
373	S5	STD	750	LCP	0+515	7.3	0+523	10					
374 375	S5 S5	STD STD	750 750	LCP LCP	0+523 0+530	7.3 7.3	0+530 0+537	10 10					
376	S5	STD	750	LCP	0+537	7.3	0+545	10					
377 378	S5 S5	STD STD	750 750	LCP LCP	0+545	7.3 2.1	0+552 0+559	10 10					7.3m STD in pipe laying schedules. Data indicates
378	S5	STD	750	LCP	0+559	7.3	0+567	10					2.1m SP.
380	S5	STD	750	LCP	0+567	7.3	0+574	10					
381 382	S5 S5	STD STD	750 750	LCP LCP	0+574 0+581	7.3	0+581 0+589	10 10					
383	S5	STD	750	LCP	0+589	7.3	0+596	10					
384 385	S5 S5	STD STD	750 750	LCP LCP	0+596 0+603	7.3 7.3	0+603 0+611	10 10					
386	S5	38	750	LCP	0+611	7.3	0+614	10					3.6m SP in pipe laying schedules. Data indicates
N/A	S5	STD	750	LCP	0+614			10					7.3m STD. 7.3m STD in pipe laying schedules. Pipe does not
						7.3	0+622						exist in data. 2.1m SP in pipe laying schedules. Data indicates
387	S5	37	750	LCP	0+622	3.6	0+624	10					3.6m SP.
388 389	S5 S5	STD STD	750 750	LCP LCP	0+624 0+631	7.3 7.3	0+631 0+638	10 10					
390	S5	STD	750	LCP	0+638	7.3	0+646	10					
391 392	S5 S5	STD STD	750 750	LCP LCP	0+646 0+653	7.3 7.3	0+653 0+660	10 10					
393	S5	STD	750	LCP	0+660	7.3	0+668	10					
394 395	S5 S5	STD STD	750 750	LCP LCP	0+668 0+675	7.3 7.3	0+675 0+682	10 10					
396	S5	STD	750	LCP	0+682	7.3	0+690	10					
397 398	S5 S5	STD STD	750 750	LCP LCP	0+690 0+697	7.3	0+697 0+704	10 10					
399	S5	STD	750	LCP	0+704	7.3	0+712	10					
400 401	S5 S5	STD STD	750 750	LCP LCP	0+712 0+719	7.3 7.3	0+719 0+726	10 10					
402	S5	STD	750	LCP	0+726	7.3	0+734	10					
403 404	S5 S5	STD STD	750 750	LCP LCP	0+734 0+741	7.3 7.3	0+741 0+748	10 10					
405 406	S5 S5	STD STD	750 750	LCP LCP	0+748 0+755	7.3 7.3	0+755	10 10					Equation: 0+761.057BK=0+000.000AH.
406	S5 S5	STD	750	LCP	0+755	7.3	0+002 0+009	10					Equation: 07701.0370K-07000.000AD.
408	S5	STD	750	LCP	0+009	7.3	0+016	10					
409 410	S5 S5	STD STD	750 750	LCP LCP	0+016 0+024	7.3 7.3	0+024 0+031	10 10					
411 412	S5 S5	STD STD	750 750	LCP LCP	0+031 0+038	7.3 7.3	0+038 0+046	10 10					
413	S5	STD	750	LCP	0+046	7.3	0+053	10					
414 415	S5 S5	STD STD	750 750	LCP LCP	0+053 0+060	7.3 7.3	0+060 0+068	10 10				+ - 1	
416	S5	STD	750	LCP	0+068	7.3	0+075	10					
417 418	S5 S5	STD STD	750 750	LCP LCP	0+075 0+082	7.3 7.3	0+082 0+090	10 10					
-10	55	510	, 50		01002	1	01030	10					1

						Pipe	Sections	that F	Electromagnetic xhibit Electromagnetic	Inspection Results Anomalies Consister	ent with Broken \	Vire Wrai	ps
Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station	Pipe Length (metres)	High Station	Reported Class	Break Region Location (metres from Low Station)	Number of Broken Wire or Bar Wraps by Region	Total Number of Broken Wire or Bar Wraps	Layout	Comments
419 420	S5 S5	STD STD	750 750	LCP LCP	0+090	7.3 7.3	0+097 0+104	10 10					
421 422	S5 S5 S5	STD STD	750 750	LCP LCP	0+104 0+112	7.3	0+104 0+112 0+119	10 10 10					
423	S5	STD	750	LCP	0+119	7.3	0+126	10					
424 425	S5 S5	STD STD	750 750	LCP LCP	0+126 0+134	7.3	0+134 0+141	10 10					
426 427	S5 S5	STD STD	750 750	LCP LCP	0+141 0+148	7.3 7.3	0+148 0+155	10 10					
428 429	S5 S5	STD STD	750 750	LCP LCP	0+155 0+163	7.3 7.3	0+163 0+170	10 10					
430 431	S5 S5	STD STD	750 750	LCP LCP	0+170 0+177	7.3 7.3	0+177 0+185	10 10					
432 433	S5 S5	STD STD	750 750	LCP LCP	0+185 0+192	7.3 7.3	0+192 0+199	10 10					
434	S5 S5	33	750	LCP LCP	0+199	7.4	0+207	10					
435 436	S5	31 31	750 750	LCP	0+207	7.4	0+214 0+222	10 10					
437 438	S5 S5	31 31	750 750	LCP LCP	0+222 0+229	7.4 7.4	0+229 0+236	10 10					
439 440	S5 S5	31 31	750 750	LCP LCP	0+236 0+244	7.4 7.4	0+244 0+251	10 10					
441 442	S5 S5	31 31	750 750	LCP LCP	0+251 0+259	7.4 7.4	0+259 0+266	10 10					
443 444	S5 S5	31 31	750 750	LCP LCP	0+266 0+274	7.4 7.4	0+274 0+281	10 10				\square	
445	S5	31	750	LCP LCP	0+281	7.4 7.4	0+288	10 10					
446 447	S5 S5	31 31	750	LCP	0+288	7.4	0+296	10					
448 449	S5 S5	31 31	750 750	LCP LCP	0+303 0+311	7.4 7.4	0+311 0+318	10 10					
450 451	S5 S5	26 31	750 750	LCP LCP	0+318 0+320	2.0 7.4	0+320 0+327	10 10				TEE	Access Hatch #4. 500mm TEE @ Station 0+319.
452 453	S5 S5	31 31	750 750	LCP LCP	0+327 0+335	7.4 7.4	0+335 0+342	10 10					
454 455	S5 S5	31 31	750 750	LCP LCP	0+342 0+350	7.4 7.4	0+350 0+357	10 10					
456	S5	31	750	LCP	0+357	7.4	0+364	10					
457 458	S5 S5	31 31	750 750	LCP LCP	0+364	7.4	0+372	10 10					
459 460	S5 S5	31 31	750 750	LCP LCP	0+379 0+387	7.4 7.4	0+387 0+394	10 10					
461 462	S5 S5	31 31	750 750	LCP LCP	0+394 0+401	7.4 7.4	0+401 0+409	10 10					
463 464	S5 S5	36 STD	750 750	LCP LCP	0+409 0+414	4.8 7.3	0+414 0+421	10 10					
465 466	S5 S5	STD STD	750 750	LCP LCP	0+421 0+428	7.3 7.3	0+428 0+436	10 10					
467	S5 S5	STD STD	750 750	LCP LCP	0+436	7.3	0+443 0+450	10 10					
468 469	S5	STD	750	LCP	0+450	7.3	0+458	10					
470 471	S5 S5	STD STD	750 750	LCP LCP	0+458 0+465	7.3 7.3	0+465 0+472	10 10					
472 473	S5 S5	STD STD	750 750	LCP LCP	0+472 0+480	7.3 7.3	0+480 0+487	10 10					
474 475	S5 S5	STD STD	750 750	LCP LCP	0+487 0+494	7.3 7.3	0+494 0+502	10 10					
476 477	S5 S5	35 31	750 750	LCP LCP	0+502 0+506	4.7 7.4	0+506 0+514	10 10					
478	S5	31	750	LCP	0+514	7.4	0+521	10 10 10				\square	
479 480	S5 S5	31 31	750	LCP LCP	0+521 0+528	7.4	0+528	10					
481 482	S5 S5	31 31	750 750	LCP LCP	0+536 0+543	7.4 7.4	0+543 0+551	10 10					1
483 484	S5 S5	31 31	750 750	LCP LCP	0+551 0+558	7.4 7.4	0+558 0+565	10 10					
485 486	S5 S5	31 31	750 750	LCP LCP	0+565 0+573	7.4 7.4	0+573 0+580	10 10					
487	S5 S5	31 31	750 750	LCP LCP	0+580	7.4 7.4	0+588 0+595	10 10 10					1
489	S5	31	750	LCP	0+595	7.4	0+603	10					
490 491	S5 S5	31 31	750 750	LCP LCP	0+603	7.4	0+610	10 10					
492 493	S5 S5	31 31	750 750	LCP LCP	0+617 0+625	7.4 7.4	0+625 0+632	10 10					1
494 495	S5 S5	34 STD	750 750	LCP LCP	0+000 0+004	4.1 7.3	0+004 0+011	10 10				\square	Equation: 0+632.185BK=0+000.000AH.
496 497	S5 S5	STD STD	750 750	LCP LCP	0+011 0+019	7.3	0+019 0+026	10 10					
498 499	S5 S5	STD STD	750 750	LCP LCP	0+026 0+033	7.3	0+033 0+041	10 10					
500	S5	STD	750	LCP	0+041	7.3	0+048	10					1
501 502	S5 S5	STD STD	750	LCP LCP	0+048	7.3	0+055	10 10				\square	
503 504	S5 S5	STD STD	750 750	LCP LCP	0+063 0+070	7.3 7.3	0+070 0+077	10 10					
505 506	S5 S5	STD STD	750 750	LCP LCP	0+077 0+085	7.3 7.3	0+085 0+092	10 10					

						Pine	Sections	that F	Electromagnetic xhibit Electromagnetic	Inspection Results	ont with Broken \	Vire Wra	ns
Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station	Pipe Length (metres)	High Station	Reported Class	Break Region Location (metres from Low Station)	Number of Broken Wire or Bar Wraps by Region	Total Number of Broken Wire or Bar Wraps	rayout	Comments
507 508 509 511 512 513 514 515 516 517 518 519 521 522 533 524 525 526 527 528 527 528 527 538 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 551 552 553 554 555 556 557 558 559 560 561	S5 S5	33 31 31 31 31 31 31 31 31 31 31 31 31 3	750 750 750 750 750 750 750 750 750 750		0+092 0+099 0+107 0+114 0+151 0+122 0+126 0+144 0+151 0+166 0+173 0+175 0+183 0+205 0+213 0+217 0+227 0+223 0+227 0+223 0+227 0+225 0+223 0+227 0+227 0+227 0+227 0+227 0+223 0+227 0+223 0+227 0+223 0+227 0+223 0+227 0+223 0+225 0+223 0+225 0+227 0+225 0+24 0+255 0+24 0+325 0+325 0+325 0+325 0+325 0+325 0+325 0+325 0+325 0+449 0+355 0+449 0+455 0+455 0+455 0+5550 0+5550 0+5550 0+550	7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	0+099 0+107 0+114 0+122 0+129 0+136 0+173 0+175 0+183 0+175 0+183 0+175 0+224 0+225 0+225 0+225 0+225 0+225 0+225 0+227 0+226 0+257 0+224 0+227 0+226 0+257 0+224 0+227 0+226 0+257 0+224 0+257 0+242 0+257 0+242 0+257 0+242 0+257 0+242 0+257 0+243 0+272 0+26 0+300 0+316 0+353 0+360 0+360 0+376 0+383 0+376 0+383 0+376 0+383 0+376 0+383 0+376 0+383 0+376 0+383 0+376 0+383 0+376 0+383 0+376 0+383 0+376 0+376 0+376 0+376 0+376 0+375 0+441 0+455 0+455 0+455 0+455 0+455 0+555 0+555 0+555 0+555 0+555 0+555 0+555 0+555 0+555 0+555 0+555 0+555 0+555 0+558 0+556 0+5580 0+558 0+5580 0+5660 0+5660 0+5660 0+5660 0+5660 0+5600 0+560000000000	Sec Desc 10 10 10	(metres from Low	Wire or Bar Wraps	Broken Wire or		Comments
581 582 583 584 585 586 587 588	S5 S5 S5 S5 S5 S5 S5 S5 S5	STD STD STD STD STD STD STD STD	750 750 750 750 750 750 750 750 750	LCP LCP LCP LCP LCP LCP LCP LCP	0+624 0+632 0+639 0+005 0+012 0+020 0+027 0+034	7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	0+632 0+639 0+005 0+012 0+020 0+027 0+034 0+042	10 10 10 10 10 10 10 10					Equation: 0+641.273BK=0+000.000AH.
589	S5	STD	750	LCP	0+042	7.3	0+042	10					
590	S5	26	750	LCP	0+049	7.3	0+051	В					2.0m-500mm TEE in pipe laying schedules. Data indicates 7.3m STD.

P P							Pipe	Sections	that E	Electromagnetic xhibit Electromagnetic	Inspection Results Anomalies Consister	ent with Broken	Wire Wr	aps
97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 99 98 99 99 99<	Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station		_	Class	Break Region Location (metres from Low	Number of Broken Wire or Bar Wraps	Total Number of Broken Wire or		
98 98<	591	S5	25	750	LCP	0+051	2.0	0+054	10				TEE	
98 98 970 170														
98 98<														_
99 80<														
98 80 70<		S5		750	LCP	0+091	7.3	0+098	10					
00 03 04<														
660 55 710 790 LOP 6112 73 LOP 6112 73 LOP 6112 73 LOP 6112 73 LOP 13 13 13 13 13 13	600	S5	STD	750	LCP	0+113	7.3	0+120	10					
663 673 770 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>														_
666 58 510 790 CP 012 012 01 0 0 0 0 0 676 85 510 790 CP 0177 73 0170 73 0170 73 0170 676 85 510 790 CP 0177 73 0170 73 0170 73 0170 676 85 510 790 CP 0177 73 0170 73 0170 73 0170 671 85 510 790 CP 0170 73 0170 0170 0170 0170 0170 673 85 510 790 CP 0220 73 0230 01 01 01 01 674 85 510 790 CP 0220 73 0230 01 01 01 01 674 85 510 790 CP 0220 73 0230 01 01 01 01 01 01 674 85 510 790 CP 0220 73 0230 01 01 01 01 674 510 730	603	S5	STD	750		0+135	7.3	0+142						
007 05 150 790 UC 0164 011														
668 58 570 730 140 1 1 1 614 58 570 730 140 130 140 <														
610 53 570 780 10	608	S5	STD	750	LCP	0+171	7.3	0+179	10					
611 63 53 75 76 10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
613 55 TP 79 LCP 420 73 6223 73 6224 73 623 73 624 73 623 73 623 73 623 73 623 73 73 73 73 73 73 <th73< th=""> 73 73 7</th73<>	611	S5	STD	750	LCP	0+193	7.3	0+200	10					
614 83 STD 750 LCP 823 730 6222 10 6 6 6 7 7 100 100		S5			LCP	0+208	7.3	0+215	10					
616 55 ST0 780 100 730 100 740 100 740 100 740 100 740 100 740 100 740 100 740 100 740 100 740 100 740 100 740 100 740 100 74		S5						0+222						
618 53 570 780 17	616	S5	STD	750	LCP	0+230	7.3	0+237	10					
619 55 570 780 10														
c11 S5 S10 T00 C20 C3 C42 C42 <thc42< th=""> <thc42< th=""> <thc42< t<="" td=""><td>619</td><td>S5</td><td>STD</td><td>750</td><td>LCP</td><td>0+252</td><td>7.3</td><td>0+259</td><td>10</td><td></td><td></td><td></td><td></td><td></td></thc42<></thc42<></thc42<>	619	S5	STD	750	LCP	0+252	7.3	0+259	10					
G23 S5 STD TD LC O<														
624 635 670 750 LCP 0-280 1.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
Ces Sis Tim Sis Sis <td>624</td> <td>S5</td> <td>STD</td> <td>750</td> <td>LCP</td> <td>0+288</td> <td>7.3</td> <td>0+296</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td>	624	S5	STD	750	LCP	0+288	7.3	0+296	10					
C27 S5 S10 S10 LC Q Q Q Q <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
C29 S5 Z3 Z3 Z3 Z5 L2 Z5 Z5 <thz5< th=""> Z5 Z5 Z5<</thz5<>	627	S5	STD	750	LCP	0+310	7.3	0+318	10					
630 55 24 750 LCP 0.320 55 0.432 10														
623 53 73 102 103 103 10	630	S5	24	750		0+326	5.5	0+332						
633 S5 STD 750 LCP 0+334 7.0 0+344 10 Amount														
634 55 570 750 LCP 0+344 3.7 0+351 10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.3m STD.</td>														7.3m STD.
G35 SS STD 750 LCP 0+38 10					LCP									
637 S5 ST0 750 LCP 0-130 7.3 0-130 10 639 S5 ST0 750 LCP 0-130 7.3 0-388 10 641 S5 ST0 750 LCP 0-138 7.3 0-388 10 642 S5 ST0 750 LCP 0-138 7.3 0-140 10 643 S5 ST0 750 LCP 0-140 7.3 0+140 10 644 S5 ST0 750 LCP 0+147 7.3 0+142 10 645 S5 ST0 750 LCP 0+147 7.3 0+142 10 646 S5 ST0 750 LCP 0+147 7.3 0+46 10 647 S5 ST0 750 LCP 0+147 7.3 0+46 10 651 S5 ST0 750 LCP 0+147 7.3 0+46 10 651 S5 ST0 750 LCP 0+14														S.m.Sr.
638 S5 S70 T50 LCP 0+372 7.3 0+380 10 Image: Constraint of the constraint of the														_
640 S5 STD 750 LCP 04388 7.3 0.4995 7.3 0.4902 10 642 S5 STD 750 LCP 0.402 7.3 0.4402 10 642 S5 STD 750 LCP 0.440 7.3 0.441 10 644 S5 STD 750 LCP 0.441 7.3 0.442 10 644 S5 STD 750 LCP 0.442 7.3 0.442 10 646 S5 STD 750 LCP 0.442 7.3 0.443 10 646 S5 STD 750 LCP 0.443 7.3 0.443 10 647 S5 STD 750 LCP 0.446 7.3 0.4461 10 648 S5 STD 750 LCP 0.446 7.3 0.4461 10 651 S5 STD 750 LCP 0.448 7.3 0.4461 10 653 S5 STD	638	S5	STD	750	LCP	0+373	7.3	0+380	10					
642 S5 STD 750 LCP 01-402 7.3 01-417 10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
643 S5 STD 750 LCP 0+417 7.3 0+424 10 645 S5 STD 750 LCP 0+412 7.3 0+424 10 645 S5 STD 750 LCP 0+432 7.3 0+432 10 10 10 10 647 S5 STD 750 LCP 0+446 7.3 0+445 10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
645 S5 STD 750 LCP 0.442 7.3 0.443 10 Image: Constraint of the constraint of the	643	S5	STD	750	LCP	0+410	7.3	0+417	10					
646 S5 STD 7.50 LCP 0.439 7.3 0.446 7.3 0.448 0 7.3 0.448 0 7.3 0.448 0 7.3 0.448 0 7.3 0.446 7.3 0.446 7.3 0.446 7.3 0.446 7.3 0.446							7.3							
648 S5 ST0 750 LCP 0.443 7.3 0.443 10 10 10 10 10 649 S5 ST0 750 LCP 0.445 7.3 0.446 10	646	S5	STD	750	LCP	0+432	7.3	0+439	10					
650 S5 STD 750 LCP 0+461 7.3 0+468 10 651 S5 STD 750 LCP 0+468 7.3 0+483 10 Image: Constraint of the const	648	S5	STD	750	LCP	0+446	7.3	0+453	10		· · · · · · · · · · · · · · · · · · ·			
651 S5 STD 750 LCP 0+468 7.3 0+475 10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td>													_	-
N/A S5 74 750 LCP 0+483 3.7 0+486 10 N/A S5 73 750 LCP 0+486 4.2 0+490 10 653 S5 N/A 750 LCP N/A 7.3 N/A N/A 654 S5 STD 750 LCP 0.4490 7.3 0.4497 10 654 S5 STD 750 LCP 0.4497 7.3 0.4497 10 654 S5 STD 750 LCP 0.4497 7.3 0.4497 10 655 STD 750 LCP 0.4997 7.3 0.4197 10 0 0 0 0 0 0 657 S5 STD 750 LCP 0.4512 7.3 0.4512 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	651	S5	STD	750	LCP	0+468	7.3	0+475	10					
N/A S5 73 750 LCP 0+486 4.2 0+490 10 653 S5 N/A 750 LCP N/A 7.3 N/A														3.6m SP in pipe laying schedules. Pipe does not exist
653 S5 N/A 750 LCP N/A 7.3 N/A N/														4.1m SP in pipe laying schedules. Pipe does not exist
654 S5 STD 750 LCP 0+490 7.3 0+497 10 Image: Constraint of the symbolic constraint of the symbolic	653	S5	N/A	750	LCP	N/A	7.3	N/A	N/A					Not listed in pipe laying schedules. Data indicates
656 S5 STD 750 LCP 0+505 7.3 0+512 10 657 S5 STD 750 LCP 0+512 7.3 0+519 10 Image: Constraint of the symbolic constraint of the symbo	654	S5	STD	750	LCP	0+490	7.3	0+497	10					7.5nl 312.
657 S5 STD 750 LCP 0+512 7.3 0+519 10 658 S5 STD 750 LCP 0+512 7.3 0+527 10 10 10 10 659 S5 STD 750 LCP 0+534 10 10 10 10 10 661 S5 21 750 LCP 0+534 7.3 0+534 10														
659 S5 STD 750 LCP 0+527 7.3 0+534 10 660 S5 21 750 LCP 0+534 7.3 0+541 10 V V/AL Value Chamber. 661 S5 N/A 750 LCP 0+534 10 V/AL V/AL Value Chamber. 662 S5 17 750 LCP 0+552 2.4 0+552 10 V/AL Value Chamber. 663 S5 STD 750 LCP 0+552 2.4 0+552 10 V/AL Value Chamber. 664 S5 STD 750 LCP 0+552 2.1 0+552 10 Image: Chamber in the initialinitial initial initialinitial initialinitialial initi	657	S5	STD	750	LCP	0+512	7.3	0+519	10					
660 S5 21 750 LCP 0+534 7.3 0+541 10 661 S5 N/A 750 LCP 0+554 10 VAL VAL 662 S5 17 750 LCP 0+554 10 Composition VAL Value Chamber. 663 S5 STD 750 LCP 0+554 7.3 0+554 10 Composition Value Chamber. 664 S5 STD 750 LCP 0+554 7.3 0+552 10 Composition Composition Composition 664 S5 15 750 LCP 0+552 7.3 0+552 10 Composition Composition Composition 666 S5 16 750 LCP 0+571 4.0 0+575 10 Composition Compositi														
662 S5 17 750 LCP 0+552 2.4 0+554 10 Image: Constraint of the symbolic constraint of the symbolic		S5				0+534	7.3	0+541					1/01	Valve Chamber
664 S5 STD 750 LCP 0+562 7.3 0+569 10 665 S5 15 750 LCP 0+569 2.1 0+571 B Image: Comparison of the symptotic comparison of the symptot comparison of the symptot comparison of the symptot	662	S5	17	750	LCP	0+552	2.4	0+554	10				VAL	
665 S5 15 750 LCP 0+569 2.1 0+571 B 666 S5 16 750 LCP 0+571 4.0 0+575 10 667 S5 15 750 LCP 0+575 2.1 0+577 B 668 S5 N/A 750 LCP N/A 3.0 N/A N/A														
667 S5 15 750 LCP 0+575 2.1 0+577 B 668 S5 N/A 750 LCP N/A 3.0 N/A N/A	665	S5	15	750	LCP	0+569	2.1	0+571	В					
668 S5 N/A 750 LCP N/A 3.0 N/A N/A														
	668	S5	N/A	750	LCP	N/A	3.0	N/A	N/A					
	669	S5	STD	750	LCP	0+577	7.3	0+584	10					

						Pine	Sections	that F		Inspection Results	ont with Broken \	Vire Wran	
Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station	Pipe Length (metres)	High Station	Reported Class	Break Region Location (metres from Low Station)	Number of Broken Wire or Bar Wraps by Region	Total Number of Broken Wire or Bar Wraps	Layout	Comments
670 671 672 673 675 676 678 679 680 681 683 684 683 684 685 686 687 690 691 692 693 694 693 694 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 707 708 707 708 707 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731	S5 S5	STD STD STD	750 750 750 750 750 750 750 750 750 750	adA adA LCP BWP BWP	0+584 0+591 0+599 0+606 0+623 0+623 0+623 0+642 0+655 0+664 0+679 0+664 0+701 0+708 0+730 0+730 0+730 0+733 0+730 0+733 0+730 0+733 0+730 0+733 0+730 0+733 0+730 0+733 0+730 0+733 0+029 0+029 0+029 0+029 0+103 0+118 0+125 0+125 0+128 0+128 0+228 0+223 0+23 0+	Interface Interface 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.3 7.3 7.3 7.3 7.3 7.3 <t< td=""><td>Stress 0+591 0+599 0+613 0+620 0+635 0+642 0+657 0+668 0+657 0+668 0+672 0+672 0+673 0+701 0+788 0+716 0+723 0+743 0+701 0+723 0+743 0+705 0+723 0+743 0+007 0+012 0+022 0+023 0+044 0+052 0+027 0+044 0+103 0+103 0+111 0+148 0+126 0+170 0+127 0+207 0+223 0+223 0+223 0+223 0+223 0+223 0+224 0+223<</td><td>Sec 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <td>xhibit Electromagnetic Break Region Location (metres from Low</td><td>Anomalies Consiste Number of Broken Wire or Bar Wraps</td><td>Total Number of Broken Wire or</td><td></td><td></td></td></t<>	Stress 0+591 0+599 0+613 0+620 0+635 0+642 0+657 0+668 0+657 0+668 0+672 0+672 0+673 0+701 0+788 0+716 0+723 0+743 0+701 0+723 0+743 0+705 0+723 0+743 0+007 0+012 0+022 0+023 0+044 0+052 0+027 0+044 0+103 0+103 0+111 0+148 0+126 0+170 0+127 0+207 0+223 0+223 0+223 0+223 0+223 0+223 0+224 0+223<	Sec 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <td>xhibit Electromagnetic Break Region Location (metres from Low</td> <td>Anomalies Consiste Number of Broken Wire or Bar Wraps</td> <td>Total Number of Broken Wire or</td> <td></td> <td></td>	xhibit Electromagnetic Break Region Location (metres from Low	Anomalies Consiste Number of Broken Wire or Bar Wraps	Total Number of Broken Wire or		
732 733 734 735 736 737 738 739 740 741 742 743 744 745 744 745 746 747 748 749 750 751 752 753 754 755 756	55 55 55 55 55 55 55 55 55 55	STD STD STD STD STD STD STD STD STD STD	820 820 820 820 820 820 820 820 820 820		0+289 0+296 0+304 0+311 0+318 0+326 0+333 0+340 0+335 0+340 0+355 0+362 0+370 0+377 0+384 0+352 0+377 0+384 0+399 0+406 0+414 0+421 0+428 0+443 0+445 0+465	7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	0+296 0+304 0+311 0+318 0+326 0+340 0+348 0+348 0+352 0+340 0+348 0+352 0+370 0+370 0+377 0+384 0+392 0+392 0+406 0+414 0+421 0+428 0+445 0+457 0+457 0+452	100 100 100 100 100 100 100 100 100 100					

Part Big Part Big							Pipe	Sections	that F		Inspection Results Anomalies Consister	ent with Broken W	Vire Wra	ps
1738 85 970 980 <th>Pure Reference Number</th> <th>Contract Number</th> <th>Piece Number</th> <th>Diameter (millimetres)</th> <th>Pipe Type</th> <th>Low Station</th> <th></th> <th>_</th> <th></th> <th>Break Region Location (metres from Low</th> <th>Number of Broken Wire or Bar Wraps</th> <th>Total Number of Broken Wire or</th> <th></th> <th></th>	Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station		_		Break Region Location (metres from Low	Number of Broken Wire or Bar Wraps	Total Number of Broken Wire or		
179 55 77 65														
1/10 2/10 2/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1														_
Tat. SS ST NO N														
133 55 777 85 777 85 777 85 777 85 777 85 777 85 777 85 777 85 777 85 777 85 777 85 777 85 777 85 777 85 777 85 777 85 77 85 77 85 77 85 77 85 78 870	761	S5	STD	820	BWP	0+501	7.3	0+509	100					
Def S5 DT BSC BWP CSC PSC DSC DE <													_	
166 58 910 800 800 800 800 757 58 870 800 800 800 800 800 800 800 777 58 870 800 800 800 800 800 800 800 800 777 58 870 800 800 800 800 800 800 800 800 777 58 870 800 800 800 800 800 800 800 800 777 58 870 800 800 800 800 800 800 800 800 777 58 870 800 800 800 800 800 800 800 800 777 58 870 800 800 800 800 800 800 800 800 777 58 870 800 800 800 800 800 800 800 800 777 58 870 800 800 800 800 800 800 800 800 800 778 58 870 800 800 800														
164 55 510 620 690 695 73 652 73 652 73 652 73 75	765	S5				0+531	7.3	0+538					_	
188 59 50 100 100 100 100 171 185 170 180 100 100 100 100 171 185 170 180 180 180 100 100 171 185 170 180 180 180 100 100 100 171 185 180 180 180 180 180 180 171 185 170 180 180 180 180 180 171 185 180 180 180 180 180 180 171 185 170 180 190 180 180 180 171 185 170 180 190 180 180 180 171 180 180 180 180 180 180 180 171 180 180 180 180 180 180 180 173 180 180 180 180 180 180 180 173 180 180 180 180 180 180 180 173 180 180 180													_	-
1/70 5.8 5.00 6.00 6.00 6.00 6.00 6.00 77 5.8 5.9 6.20 6.00 6.20 6.00 6.20 6.20 77 5.8 5.9 6.20 6.20 6.20 6.20 6.20 6.20 77 5.8 5.9 6.20 8.00 6.20 6.20 6.20 6.20 77 5.8 5.9 6.20 8.00 6.20 6.20 6.20 6.20 77 5.8 5.9 6.20 8.00 6.20 7.2 6.20 7.2 6.20 78 5.8 5.9 6.20 8.00 6.20 7.2 6.20 7.2 6.20 7.2 6.20 7.2 6.20 7.2 6.20 7.2 <	768	S5	STD	820	BWP	0+553	7.3	0+560	100					
171 85 870 820 800 1 1 1 171 85 91 820 800 0.590 800 0 0 0 171 85 91 820 800 0.590 1.00 0 0 0 171 85 810 800 0.590 1.00 0 0 0 171 85 810 800 0.590 1.00 0 0 0 171 85 810 800 0.600 1.00 0 0 0 0 171 85 810 800 0.600 0 0 0 0 0 0 171 85 810 800 0.600 0 0 0 0 0 0 171 85 810 800 0.600 0 0 0 0 0 0 171 85 810 800 0.600 0 0 0 0 0 171 85 810 800 0.600 0 0 0 0 0 173 85 810 800 800 0.600														
177 58 500 800 800 800 178 58 500 800 800 800 178 58 500 800 800 800 178 58 500 800 800 800 178 58 500 800 800 800 800 178 58 500 800 800 800 800 178 58 500 800 800 800 800 178 58 500 800 800 800 800 178 58 500 800 800 800 800 178 58 500 800 800 800 800 178 58 500 800 800 800 800 178 58 500 800 800 800 800 178 58 500 800 800 800 800 800 178 58 500 800 800 800 800 800 178 58 500 800 800 800 800 800 178 58 500 8														
171 30 V 100 100 100 100 100 173 85 170 80 100 100 100 100 173 85 170 80 100 100 100 100 173 85 170 80 100 100 100 100 173 85 170 80 800 100 100 100 173 85 170 80 800 1000 100 100 174 85 170 800 800 1000 100 100 174 85 170 800 800 1000 100 100 174 85 170 800 800 1000 100 100 174 85 170 800 800 1000 100 100 174 85 170 800 800 1000 100 100 174 85 170 800 800 1000 100 100 174 85 170 800 800 1000 100 100 174 85 170 800 1000					BWP									
174 55 510 800	773	S5	9	820	BWP	0+589	2.0	0+591	В				OL	
P70 S3 S70 820 870 820 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
177 55 570 80 0.00 0.00 0.00 0.00 178 55 570 80 0.00 0.00 0.00 0.00 178 55 570 80 0.00 0.00 0.00 0.00 178 55 570 80 0.00 0.00 0.00 0.00 178 55 570 80 0.00 0.00 0.00 0.00 178 55 570 80 0.00 0.00 0.00 0.00 178 55 570 80 0.00 0.00 0.00 0.00 178 55 570 80 0.00 0.00 0.00 0.00 178 55 570 80 0.00 0.00 0.00 0.00 178 55 570 80 0.00 0.00 0.00 0.00 178 55 570 80 0.00 0.00 0.00 0.00 178 55 570 80 0.00 0.00 0.00 0.00 178 55 570 80 0.00 0.00 0.00 0.00 178 55 570 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>-</td>													+	-
177 53 570 80 900 942 7.3 943 900 942 7.3 943 940 942 7.3 943 940 942 7.3 943 940 942 7.3 943 940 942 7.3 943 940 942 7.3 945 940 940 941														
1780 55 570 820 990* 0.463 100<						0+621		0+628						
Table S5 Tm L20 WW L-663 L30 L400 Land Land <thland< th=""> <thland< th=""> <thland< td="" th<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thland<></thland<></thland<>														
B8 S5 TD 820 BWP 0.667 1.00 A B8 S5 TD 820 BWP 0.667 1.0 A A B8 S5 TD 820 BWP 0.667 1.0 A A B8 S5 TD 820 BWP 0.667 1.0 A A B8 S5 TD 820 BWP 0.667 1.0 A A B8 S5 TD 820 BWP 0.667 1.0 A A 780 S5 TD 820 BWP 0.4721 1.3 0.4721 0.0 A A 781 S5 TD 820 BWP 0.4721 0.3 0.4731 0.0 A A A 781 S5 TD 820 BWP 0.4721 0.3 0.4701 0.0 A A A 792 S5 TD 820 BWP 0.4021 7.3 0.4021 0.4021 0.4021 0.4	781	S5	STD	820	BWP	0+643	7.3	0+650	100					
Table ST														
1786 55 570 820 MVP ee_{77} $o<_{77}$														
187 55 570 820 1970 920 9														
788 S5 S70 820 WW 0+094 7.3 0+701 1.0 0 790 S5 S70 820 BWW 0+702 7.3 0+705 1.0 0 0 0 0 791 S5 S70 820 BWW 0+702 7.3 0+703 1.0 0														
P70 S5 S70 820 WW 0.708 7.3 0.718 0.3 0.728 0.0 <td>788</td> <td>S5</td> <td>STD</td> <td>820</td> <td>BWP</td> <td>0+694</td> <td>7.3</td> <td>0+701</td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td></td>	788	S5	STD	820	BWP	0+694	7.3	0+701	100					
191 SS STD 820 BWP 0.726 7.3 0.723 100 Eaution: 0.736 0.736 0.730														
P32 S5 ST0 820 BWP 0+723 7.3 0+730 100 P42														
294 55 570 820 8WP 6+003 7.3 0+010 100 795 55 570 820 8WP 6+003 7.3 0+013 100 100 100 796 55 570 820 8WP 6+003 7.3 0+033 100 100 100 796 55 570 820 8WP 0+037 7.3 0+043 100 100 100 100 801 55 570 820 8WP 0+047 7.3 0+041 100 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0+723</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>						0+723							_	
P796 S5 STD 820 BWF 0-010 7.3 0+025 100 Image: Constraint of the const								0+003						Equation: 0+735.047BK=0+000.000AH.
798 55 5TD 820 BWP 0+025 7.3 0+039 100 Image: Constraint of the constraint of th	795	S5	STD	820	BWP	0+010	7.3	0+017	100					
798 S5 STD 820 BWP 0-02 7.3 0+074 100 Image: Constraint of the constraint of the														
799 S5 STD 820 BWP 0+047 100 Image: constraint of the second s														
801 S5 STD 820 BW 0.061 7.3 0.061 0.0 803 S5 STD 820 BW 0.063 7.3 0.066 1.00 803 S5 STD 820 BW 0.067 7.3 0.067 1.00 805 S5 STD 820 BW 0.077 3 0.03 1.00 806 S5 STD 820 BW 0.03 7.3 0.030 1.00 807 S5 STD 820 BW 0.010 1.01 1.00 807 S5 STD 820 BW 0.112 7.3 0.112 1.00 811 S5 STD 820 BW 0.112 7.3 0.112 1.00 813 S5 STD 820 BW 0.112 7.3 0.112 1.00 1.01 814 S5 STD 820 BW 0.116 7.3														
802 S5 STD 820 BWP 0+06 7.3 0+06 100 804 S5 STD 820 BWP 0+076 7.3 0+08 100 804 S5 STD 820 BWP 0+090 7.3 0+098 100 806 S5 STD 820 BWP 0+090 7.3 0+098 100 806 S5 STD 820 BWP 0+105 7.3 0+108 100 808 S5 STD 820 BWP 0+112 7.3 0+121 100 810 S5 STD 820 BWP 0+127 7.3 0+121 100 811 S5 STD 820 BWP 0+124 7.3 0+124 100 814 S5 STD 820 BWP 0+147 7.3 0+124 100 814 S5 STD 820 BWP 0+117														-
804 S5 STD 82.0 BWP 0+076 7.3 0+081 100 805 S5 STD 82.0 BWP 0+090 100 100 806 S5 STD 82.0 BWP 0+090 7.3 0+091 100 807 S5 STD 82.0 BWP 0+105 7.3 0+112 100 808 S5 STD 82.0 BWP 0+112 7.3 0+112 100 810 S5 STD 82.0 BWP 0+112 7.3 0+112 100 811 S5 STD 82.0 BWP 0+142 7.3 0+142 100 814 S5 STD 82.0 BWP 0+149 7.3 0+164 100 814 S5 STD 82.0 BWP 0+164 7.3 0+171 100 815 S5 STD 82.0 BWP 0+167 7.3	802	S5	STD	820	BWP	0+061	7.3	0+069	100					
805 S5 STD 820 BWP 0+093 7.3 0+096 100 807 S5 STD 820 BWP 0+099 7.3 0+105 100 807 S5 STD 820 BWP 0+105 7.3 0+112 100 809 S5 STD 820 BWP 0+112 7.3 0+121 100 811 S5 STD 820 BWP 0+127 7.3 0+121 100 811 S5 STD 820 BWP 0+127 7.3 0+141 100 813 S5 STD 820 BWP 0+142 7.3 0+142 100 814 S5 STD 820 BWP 0+147 7.3 0+171 100 815 S5 STD 820 BWP 0+171 7.3 0+171 100 814 S5 STD 820 BWP 0+172 <														
807 S5 STD 820 BWP 0+105 7.3 0+110 0 809 S5 STD 820 BWP 0+112 7.3 0+120 100 811 S5 STD 820 BWP 0+120 7.3 0+120 100 811 S5 STD 820 BWP 0+120 7.3 0+134 100 811 S5 STD 820 BWP 0+120 7.3 0+144 100 813 S5 STD 820 BWP 0+142 7.3 0+144 100 813 S5 STD 820 BWP 0+142 7.3 0+144 100 0 815 S5 STD 820 BWP 0+147 7.3 0+171 100 0 0 816 S5 STD 820 BWP 0+178 7.3 0+174 100 0 0 819 S5 STD 820 BWP 0+178 7.3 0+201 100 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
808 55 57D 820 BWP 0+112 7.3 0+120 100 810 55 57D 820 BWP 0+120 7.3 0+120 100 811 55 57D 820 BWP 0+127 7.3 0+127 100 812 55 57D 820 BWP 0+124 7.3 0+124 100 812 55 57D 820 BWP 0+142 7.3 0+142 100 814 55 57D 820 BWP 0+142 7.3 0+140 100 814 55 57D 820 BWP 0+142 7.3 0+171 100 816 55 57D 820 BWP 0+186 7.3 0+193 100 818 55 57D 820 BWP 0+120 7.3 0+201 0 0 821 55 57D 820 BWP 0+2														
809 S5 STD 820 BWP 0+120 7.3 0+120 100 811 S5 STD 820 BWP 0+120 7.3 0+114 100 811 S5 STD 820 BWP 0+120 7.3 0+144 100 Image: Comparison of the comparis													_	
811 S5 STD 820 BWP 0+124 7.3 0+134 100 813 S5 STD 820 BWP 0+142 7.3 0+149 100 814 S5 STD 820 BWP 0+142 7.3 0+149 100 Image: Comparison of the comparis	809	S5	STD	820	BWP	0+112	7.3	0+120	100					
812 S5 STD 820 BWP 0+142 7.3 0+142 100 814 S5 STD 820 BWP 0+142 7.3 0+149 100 814 S5 STD 820 BWP 0+156 7.3 0+164 100 Image: Constraint of the state of the													_	
814 S5 STD 820 BWP 0+149 7.3 0+156 100 815 S5 STD 820 BWP 0+164 7.3 0+164 100 Image: Constraint of the con	812	S5	STD	820	BWP	0+134	7.3	0+142	100					
815 S5 STD 820 BWP 0+156 7.3 0+171 100 816 S5 STD 820 BWP 0+171 7.3 0+178 100 Image: Constraint of the con		S5											+	-
816 S5 STD 820 BWP 0+164 7.3 0+178 100 817 S5 STD 820 BWP 0+178 7.3 0+178 100 818 S5 STD 820 BWP 0+178 7.3 0+178 100 Image: Constraint of the constrai						0+156								
818 S5 STD 820 BWP 0+178 7.3 0+186 100 819 S5 STD 820 BWP 0+186 7.3 0+193 100 821 S5 STD 820 BWP 0+186 7.3 0+200 100 Image: Constraint of the constrai						0+164		0+171	100					
819 S5 STD 820 BWP 0+193 7.3 0+200 100 820 S5 STD 820 BWP 0+193 7.3 0+200 100 821 S5 STD 820 BWP 0+120 7.3 0+201 100 Image: Comparison of the comparis														1
821 S5 STD 820 BWP 0+200 7.3 0+208 100 822 S5 STD 820 BWP 0+208 7.3 0+215 100 Image: Constraint of the con	819	S5	STD	820	BWP	0+186	7.3	0+193	100					
822 S5 STD 820 BWP 0+208 7.3 0+215 100 Image: Constraint of the constraint of th														-
824 S5 STD 820 BWP 0+222 7.3 0+230 100 825 S5 STD 820 BWP 0+237 7.3 0+237 100 Image: Constraint of the state of th	822			820		0+208	7.3	0+215	100					
825 S5 STD 820 BWP 0+230 7.3 0+237 100 826 S5 STD 820 BWP 0+237 7.3 0+244 100 Image: Constraint of the state of th													+	
826 S5 STD 820 BWP 0+237 7.3 0+244 100 827 S5 STD 820 BWP 0+234 7.3 0+252 100 Image: Constraint of the state of th														
828 S5 STD 820 BWP 0+252 7.3 0+259 100 829 S5 STD 820 BWP 0+259 7.3 0+256 100 Image: Constraint of the con						0+237		0+244						
829 S5 STD 820 BWP 0+259 7.3 0+266 100 830 S5 STD 820 BWP 0+274 7.3 0+274 100 Image: Constraint of the con													_	-
831 S5 STD 820 BWP 0+274 7.3 0+281 100 832 S5 STD 820 BWP 0+281 7.3 0+288 100 833 S5 S 820 BWP 0+288 1.7 0+290 100 Image: Constraint of the state of the st	829	S5	STD	820	BWP	0+259	7.3	0+266	100					
832 S5 STD 820 BWP 0+281 7.3 0+288 100 833 S5 S 8 820 BWP 0+281 1.7 0+290 100 Image: Constraint of the constraint o													+	
833 S5 8 820 BWP 0+288 1.7 0+290 100 834 S5 STD 820 BWP 0+290 7.3 0+297 100 835 S5 STD 820 BWP 0+290 7.3 0+297 100 836 S5 STD 820 BWP 0+304 7.3 0+310 100 837 S5 STD 820 BWP 0+312 7.3 0+312 100 100 838 S5 STD 820 BWP 0+312 7.3 0+312 100 100 100 838 S5 STD 820 BWP 0+312 7.3 0+341 100 100 100 840 S5 STD 820 BWP 0+324 7.3 0+334 100 100 841 S5 STD 820 BWP 0+344 7.3 0+348 100 100 100 841 S5 STD 820 BWP 0+344 7.3														
835 S5 STD 820 BWP 0+297 7.3 0+304 100 836 S5 STD 820 BWP 0+304 7.3 0+312 100 837 S5 STD 820 BWP 0+314 7.3 0+312 100 Image: Comparison of the text of text o	833	S5	8	820	BWP	0+288	1.7	0+290	100					
836 S5 STD 820 BWP 0+304 7.3 0+312 100 837 S5 STD 820 BWP 0+312 7.3 0+319 100 838 S5 STD 820 BWP 0+312 7.3 0+319 100 839 S5 STD 820 BWP 0+326 7.3 0+334 100 840 S5 STD 820 BWP 0+324 7.3 0+341 100 841 S5 STD 820 BWP 0+344 7.3 0+346 100 842 S5 STD 820 BWP 0+348 7.3 0+346 100													+	-
838 S5 STD 820 BWP 0+319 7.3 0+326 100 839 S5 STD 820 BWP 0+326 7.3 0+334 100 840 S5 STD 820 BWP 0+343 7.3 0+341 100 841 S5 STD 820 BWP 0+341 7.3 0+348 100 842 S5 STD 820 BWP 0+348 7.3 0+348 100 842 S5 STD 820 BWP 0+348 7.3 0+3456 100	836	S5	STD	820	BWP	0+304	7.3	0+312	100					
839 S5 STD 820 BWP 0+326 7.3 0+334 100 840 S5 STD 820 BWP 0+334 7.3 0+334 100 841 S5 STD 820 BWP 0+341 7.3 0+344 100 841 S5 STD 820 BWP 0+348 7.3 0+346 100 842 S5 STD 820 BWP 0+348 7.3 0+345 100													+	
840 S5 STD 820 BWP 0+334 7.3 0+341 100 841 S5 STD 820 BWP 0+341 7.3 0+348 100 842 S5 STD 820 BWP 0+348 7.3 0+348 100														
842 S5 STD 820 BWP 0+348 7.3 0+356 100	840	S5				0+334	7.3	0+341	100					
													+	1
843 S5 STD 820 BWP 0+356 7.3 0+363 100							7.3							

						Pipe	Sections	that E	Electromagnetic xhibit Electromagnetic	Inspection Results Anomalies Consister	ent with Broken V	Vire Wra	DS
Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station	Pipe Length (metres)	High Station	Reported Class	Break Region Location (metres from Low Station)	Number of Broken Wire or Bar Wraps by Region	Total Number of Broken Wire or Bar Wraps	Layout	Comments
844	S5	STD	820	BWP	0+363	7.3	0+370	100					
845 846	S5 S5	STD STD	820 820	BWP BWP	0+370 0+378	7.3 7.3	0+378 0+385	100 100					
847	S5	STD	820	BWP	0+385	7.3	0+392	100					
848 849	S5 S5	STD STD	820 820	BWP BWP	0+392 0+400	7.3 7.3	0+400 0+407	100 100					
850	S5	STD	820	BWP	0+407	7.3	0+414	100					
851 852	S5 S5	STD	820 820	BWP BWP	0+414 0+422	7.3 7.3	0+422 0+429	100 100					
853	S5	STD STD	820	BWP	0+422	7.3	0+429	100					
854	S5	STD	820	BWP	0+436	7.3	0+444	100				0	
855 856	S5 S5	5 STD	820 820	BWP BWP	0+444 0+446	2.0 7.3	0+446 0+453	B 100				OL	Access Hatch #9. 500mm OL @ Station 0+446.
857	S5	STD	820	BWP	0+453	7.3	0+460	100					
858 859	S5 S5	STD STD	820 820	BWP BWP	0+460 0+468	7.3 7.3	0+468 0+475	100 100					
860	S5	STD	820	BWP	0+475	7.3	0+482	100					
861 862	S5 S5	STD STD	820 820	BWP BWP	0+482 0+490	7.3 7.3	0+490 0+497	100 100					
863	S5	STD	820	BWP	0+497	7.3	0+504	100					
864 865	S5 S5	STD STD	820 820	BWP BWP	0+504 0+511	7.3 7.3	0+511 0+519	100 100					
866	S5	STD	820	BWP	0+519	7.3	0+526	100					
867 868	S5 S5	STD STD	820 820	BWP BWP	0+526 0+533	7.3	0+533 0+541	100 100				+	
869	S5	STD	820	BWP	0+541	7.3	0+548	100					
870 871	S5 S5	STD STD	820 820	BWP BWP	0+548	7.3 7.3	0+555	100 100					
872	S5	STD	820	BWP	0+555 0+563	7.3	0+563 0+570	100					
873	S5	STD	820	BWP	0+570	7.3	0+577	100					
874 875	S5 S5	STD STD	820 820	BWP BWP	0+577 0+585	7.3 7.3	0+585 0+592	100 100					
876	S5	STD	820	BWP	0+592	7.3	0+599	100					
877 878	S5 S5	STD STD	820 820	BWP BWP	0+599 0+607	7.3	0+607 0+614	100 100					
879	S5	STD	820	BWP	0+614	7.3	0+621	100					
880 881	S5 S5	STD STD	820 820	BWP BWP	0+621 0+629	7.3 7.3	0+629 0+636	100 100					
882	S5	STD	820	BWP	0+636	7.3	0+643	100					
883 884	S5 S5	STD STD	820 820	BWP BWP	0+643 0+651	7.3 7.3	0+651 0+658	100 100					
885	S5	STD	820	BWP	0+658	7.3	0+665	100					
886 887	S5	STD	820 820	BWP BWP	0+665	7.3 7.3	0+673 0+680	100					
888	S5 S5	STD STD	820	BWP	0+673 0+680	7.3	0+680	100 100					
889	S5	STD	820	BWP	0+687	7.3	0+694	100					Equation: 0 700 000BK 0071 - 0 000 000AH
890 891	S5 S5	STD STD	820 820	BWP BWP	0+694 0+002	7.3 7.3	0+002 0+009	100 100					Equation: 0+700.000BK+0971=0+000.000AH
892	S5	STD	820	BWP	0+009	7.3	0+016	100					
893 894	S5 S5	STD STD	820 820	BWP BWP	0+016 0+024	7.3 7.3	0+024 0+031	100 100					
895	S5	STD	820	BWP	0+031	7.3	0+038	100					
896 897	S5 S5	STD STD	820 820	BWP BWP	0+038 0+046	7.3 7.3	0+046 0+053	100 100					
898	S5	STD	820	BWP	0+053	7.3	0+060	100					
899 900	S5 S5	STD STD	820 820	BWP BWP	0+060 0+068	7.3 7.3	0+068 0+075	100 100				+	
901	S5	STD	820	BWP	0+075	7.3	0+082	100					
902 903	S5 S5	STD STD	820 820	BWP BWP	0+082 0+090	7.3	0+090 0+097	100 100				+	
904	S5	STD	820	BWP	0+097	7.3	0+104	100					
905 906	S5 S5	STD STD	820 820	BWP BWP	0+104 0+112	7.3 7.3	0+112 0+119	100 100					
907	S5	STD	820	BWP	0+119	7.3	0+126	100					
908 909	S5 S5	STD STD	820 820	BWP BWP	0+126 0+134	7.3 7.3	0+134 0+141	100 100				+	
909	S5 S5	STD	820	BWP	0+141	7.3	0+148	100					
911 912	S5 S5	STD STD	820 820	BWP BWP	0+148 0+156	7.3 7.3	0+156 0+163	100 100				\square	
913	S5 S5	STD	820	BWP	0+163	7.3	0+163	100					
914	S5	STD	820	BWP	0+170	7.3	0+178	100					
915 916	S5 S5	STD STD	820 820	BWP BWP	0+178 0+185	7.3 7.3	0+185 0+192	100 100					
917	S5	STD	820	BWP	0+192	7.3	0+199	100					
918 919	S5 S5	STD STD	820 820	BWP BWP	0+199 0+207	7.3 7.3	0+207 0+214	100 100					
920	S5	STD	820	BWP	0+214	7.3	0+221	100					
921 922	S5 S5	STD STD	820 820	BWP BWP	0+221 0+229	7.3 7.3	0+229 0+236	100 100				+	
923	S5	STD	820	BWP	0+236	7.3	0+243	100					
924 925	S5 S5	STD STD	820 820	BWP BWP	0+243 0+251	7.3	0+251 0+258	100 100				+	
926	S5	STD	820	BWP	0+258	7.3	0+265	100					
927 928	S5 S5	STD STD	820 820	BWP BWP	0+265 0+273	7.3 7.3	0+273 0+280	100 100				+	
929	S5	STD	820	BWP	0+280	7.3	0+287	100					
930	S5	STD	820 820	BWP BWP	0+287 0+295	7.3 7.3	0+295	100 100				+	
931	S5	STD	020	DWP	U+293	1.5	0+302	100					

b b							Pipe	Sections	that E	Electromagnetic whibit Electromagnetic	Inspection Results Anomalies Consiste	ent with Broken V	Vire Wr	aps
92 53 70 83 97 93<	Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station	Pipe Length (metres)	High Station	Reported Class	(metres from Low	Wire or Bar Wraps	Broken Wire or	Layout	Comments
98 83 970 803 970 803 970 803 970 803 970 803 970 803 970 803 970 803 970 803 970 803 970 803 970 803 970 803 970 803 970 803 970 803 970 803		S5							100					
985 85 870 85 870 850 870													_	
977 85 870 80 970 85 870 80 970 85 870 80 970 85 870 80 970 85 870 80 970 <td< td=""><td></td><td>S5</td><td></td><td>820</td><td></td><td></td><td>7.3</td><td>0+331</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		S5		820			7.3	0+331						
98 95 97 98 98 98 98 98 99 993 93 99 993 93 99 993 93 99 993 93 99 993 93 99 993 93 99 933 93 <td>937</td> <td>S5</td> <td>STD</td> <td>820</td> <td>BWP</td> <td>0+339</td> <td>7.3</td> <td>0+346</td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td></td>	937	S5	STD	820	BWP	0+339	7.3	0+346	100					
940 85 870 802 802 10														
Set Set <td>940</td> <td>S5</td> <td>STD</td> <td>820</td> <td>BWP</td> <td>0+361</td> <td>7.3</td> <td>0+368</td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td></td>	940	S5	STD	820	BWP	0+361	7.3	0+368	100					
944 55 550 900 900 900 900 900 947 955 750 800 900 9442 73 9442 93 940 940 940 940 947 955 750 800 900 9442 73 9402 93 940 941 940 947 953 970 800 900 9442 73 9444 940 940 940 940 950 853 870 800 900 9444 944	942	S5	STD	820	BWP	0+375	7.3	0+383	100					
946 85 870 826 870 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>													_	
947 85 870 940 944 2.0 944 94 944 94 944 94 944 94 944 94	945	S5	STD	820	BWP	0+397	7.3	0+404	100				_	
949 85 870 840 870 840 870 840 870 821 825 870 840 870 840 870 840 870 821 825 870 820 870 840 840 840 840 821 825 870 820 870 820 870 820 870 820 821 870 820 870 820 870 820 870 820 825 870 420 820 820 820 820 820 825 870 420 820 820 820 820 820 825 870 420 820 820 820 820 820 825 870 420 820 820 820 820 820 825 870 420 820 820 820 820 820 825 870 820 870 820 870 820 870 820 825 870 820 870 820 870 820 870 820 825 870 820 870 870 <		S5					7.3							
980 853 970 850 870 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
92 85 1.0 92 94 90 94 95 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96	950	S5	STD	820	BWP	0+434	7.3	0+441	100					
913 93 93 90													VAL	Valve Chamber #3.
954 957 460 800 800 9400 7.2 0.4005 1.8 9400 9400 7.2 0.4005 1.8 957 857 41 820 800 9400 7.3 0.4005 1.8 94000 94000 94000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Equation: 0+457.000BK (Contract S5) =</td>														Equation: 0+457.000BK (Contract S5) =
958 97 42 820 900 900 20 900 10 10 10 10 959 97 47 800 900 20 900 10 10 10 10 959 97 47 800 900 20 900 10 10 10 10 950 97 970 800 900 20 900 10 10 10 10 961 97 970 800 900 900 70 900 10 10 10 961 97 970 800 900 70 70 100 10 10 10 964 97 970 800 900 70 70 100 10 10 10 965 97 970 800 900 10 10 10 10 10 971 970 800 900 10 10 10 10 10 10 971 970 800 800 910 13 100 10 10 10 971 970 800 900 113 13 11													WYE	
97 97 48 98 98 94 96 97 95 97 98 98 96 97 96 97 97 98 <														
999 979 970 870 <td>957</td> <td>S7</td> <td>43</td> <td>820</td> <td>BWP</td> <td>0+019</td> <td>2.0</td> <td>0+021</td> <td>В</td> <td></td> <td></td> <td></td> <td></td> <td></td>	957	S7	43	820	BWP	0+019	2.0	0+021	В					
961 97 870 830 840 940 7.3 9403 7.3 9403 7.3 9403 7.3 9403 7.3 9403 9403 7.3 9403 9403 7.3 9403 9403 7.3 9403 9403 9403 7.3 9403 94133 94133 94133 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>													-	
962 97 870 820 940 0.400 1.0		S7		820		0+035		0+043					_	
964 97 870 820 969 97 870 820 960 97 870 820 960 97 870 820 960 97 870 820 960 97 870 820 960 97 870 820 960 97 870 820 960 97 870 820 960 97 870 820 960 97 870 820 960 97 870 820 960 97 870 820 960 97 870		S7				0+050	7.3	0+057					_	
esc ST ST SD SW Port TA Dot Desc Desc <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>													_	
967 97 870 820 840 940 97 370 820 840 100	965	S7	STD	820	BWP	0+072	7.3	0+079	100					
666 57 570 820 8WP 6400 7.3 7.3														
970 57 570 820 8WP 0.110 1.01	968	S7	STD	820	BWP	0+094	7.3	0+101	100					
972 57 570 820 8WP 6+133 7.3 6+133 100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
974 57 570 820 BWP 0+130 7.3 0+130 130 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
975 57 571 820 NWP 0+145 7.3 0+160 100 977 57 571 820 BWP 0+150 7.3 0+167 100 100 100 977 57 571 820 BWP 0+167 7.3 0+174 100 100 100 978 57 571 820 BWP 0+174 7.3 0+181 100 100 100 100 981 57 571 820 BWP 0+187 7.3 0+180 100 100 100 100 981 57 570 820 BWP 0+187 7.3 0+180 10	973	S7	STD	820	BWP	0+130	7.3	0+138	100					
976 57 571 820 NWP 0+152 7.3 0+167 100 978 57 571 820 NWP 0+167 7.3 0+174 100 978 57 571 820 NWP 0+167 7.3 0+174 100 100 100 980 57 571 820 NWP 0+162 7.3 0+161 100 100 100 100 981 57 571 820 NWP 0+162 7.3 0+261 100 100 100 984 57 571 820 NWP 0+211 7.3 0+226 100 100 100 100 984 57 571 820 NWP 0+211 7.3 0+231 100 100 100 100 986 57 571 820 NWP 0+237 7.3 0+231 100 100 100 100 100 100 100 100 100 100 100 100 100 100														
978 57 570 820 BWP 0+167 7.3 0+181 100 100 100 980 57 570 820 BWP 0+182 7.3 0+189 100 100 100 100 981 57 570 820 BWP 0+182 7.3 0+189 100 100 100 982 57 570 820 BWP 0+182 7.3 0+204 100 100 100 984 57 570 820 BWP 0+128 7.3 0+224 100 100 100 100 984 57 570 820 BWP 0+228 7.3 0+240 100 100 100 100 986 57 570 820 BWP 0+226 7.3 0+240 100 100 100 100 100 986 57 570 820 BWP 0+227 7.3 0+270 100 100 100 100 100 100 100 100	976	S7	STD	820	BWP	0+152	7.3	0+160	100					
990 S7 STD 820 8WP 0+182 7.3 0+195 100 981 S7 STD 820 8WP 0+195 7.3 0+204 100 982 S7 STD 820 8WP 0+126 7.3 0+204 100 984 S7 STD 820 8WP 0+211 7.3 0+226 100 986 S7 STD 820 8WP 0+226 7.3 0+23 100 986 S7 STD 820 8WP 0+226 7.3 0+23 100 987 S7 S7D 820 8WP 0+226 7.3 0+23 100 990 S7 STD 820 8WP 0+226 7.3 0+226 100 991 S7 STD 820 8WP 0+227 7.3 0+226 100 994 S7 STD 820 8WP 0+027														
981 S7 STD 820 SW 0+189 7.3 0+196 100 982 S7 STD 820 BWW 0+204 7.3 0+214 100 983 S7 STD 820 BWW 0+204 7.3 0+218 100 985 S7 STD 820 BWW 0+226 7.3 0+228 100 Component 986 S7 STD 820 BWW 0+226 7.3 0+228 100 Component Component 988 S7 STD 820 BWW 0+226 7.3 0+220 100 Component Component Component 991 S7 STD 820 BWP 0+226 7.3 0+220 100 Component Component Component 991 S7 STD 820 BWP 0+227 7.3 0+281 100 Component Component Component 992														
984 S7 STD 820 8WP 0+204 7.3 0+211 7.0 0+218 100 985 S7 STD 820 8WP 0+218 100 100 100 100 986 S7 STD 820 8WP 0+226 7.3 0+226 100 100 100 100 987 STD 820 8WP 0+226 7.3 0+226 100 100 100 100 988 S7 STD 820 8WP 0+226 7.3 0+226 100<	981	S7	STD	820	BWP	0+189	7.3	0+196	100					
984 S7 ST0 820 BWP 0+218 7.3 0+226 1.00 985 S7 ST0 820 BWP 0+218 7.3 0+226 1.00 986 S7 ST0 820 BWP 0+238 7.3 0+231 1.00 0 0 988 S7 ST0 820 BWP 0+240 7.3 0+241 0 0 0 990 S7 ST0 820 BWP 0+240 7.3 0+251 100 0 0 990 S7 ST0 820 BWP 0+240 7.3 0+251 100 0 0 991 S7 ST0 820 BWP 0+252 7.3 0+251 100 0 0 0 993 S7 ST0 820 BWP 0+277 7.3 0+281 100 0 0 0 0 995 S7 ST0 820 BWP 0+027 7.3 0+021 100 0 0 0														
986 S7 ST0 820 BWP 0+226 7.3 0+231 7.3 0+240 100 987 S7 ST0 820 BWP 0+233 7.3 0+240 100 Image: constraint of the state of the stat	984	S7	STD	820	BWP	0+211	7.3	0+218	100					
988 57 STD 820 8WP 0-233 7.3 0+240 7.3 0+240 7.3 0+240 7.3 0+240 7.3 0+240 7.3 0+240 7.3 0+245 7.3 0+245 7.3 0+255 7.3 0+255 7.3 0+250 7.3 0+257 7.3 0+264 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
989 57 STD 820 BWP 0+245 7.3 0+255 100 991 57 STD 820 BWP 0+255 7.3 0+262 7.3 0+275 7.0 0+270 7.3 0+270 100 Image: Constraint of the const		S7				0+233		0+240						
991 S7 STD 820 BWP 0+262 7.3 0+270 100 992 S7 STD 820 BWP 0+277 7.3 0+271 100 Image: Constraint of the state of th	989	S7	STD	820	BWP	0+248	7.3	0+255	100					
992 S7 STD 820 BWP 0+277 7.3 0+277 100 993 S7 STD 820 BWP 0+277 7.3 0+292 100 Image: Constraint of the state of th														
994 S7 STD 820 BWP 0+284 7.3 0+292 100 Image: constraint of the state of	992	S7	STD	820	BWP	0+270	7.3	0+277	100					
996 57 STD 820 BWP 0+000 7.3 0+015 100 997 S7 STD 820 BWP 0+015 7.3 0+015 100 Image: constraint of the state of	994	S7	STD	820	BWP	0+284	7.3	0+292	100					
997 S7 STD 820 BWP 0+007 7.3 0+015 100 998 S7 STD 820 BWP 0+022 7.3 0+022 100 1000 S7 STD 820 BWP 0+029 7.3 0+029 100 1001 S7 STD 820 BWP 0+029 7.3 0+044 100 1002 S7 STD 820 BWP 0+029 7.3 0+044 100 Image: Control or Con														Equation: 0+295 9334H=0+000 000BK
999 S7 STD 820 BWP 0+022 7.3 0+029 100 1001 S7 STD 820 BWP 0+029 7.3 0+041 100 1002 S7 STD 820 BWP 0+037 7.3 0+044 100 Image: Constraint of the constraint of	997	S7	STD	820	BWP	0+007	7.3	0+015	100					
1000 \$7 STD 820 BWP 0+029 7.3 0+044 100 1001 \$7 STD 820 BWP 0+044 7.3 0+044 100														
1002 S7 STD 820 BWP 0+044 7.3 0+051 100 1003 S7 STD 820 BWP 0+051 7.3 0+059 100	1000	S7	STD	820	BWP	0+029	7.3	0+037	100					
1004 57 STD 820 BWP 0-1059 7.3 0-1066 100 1005 S7 STD 820 BWP 0-106 7.3 0+073 100	1002	S7	STD	820	BWP	0+044	7.3	0+051	100					
1005 S7 STD 820 BWP 0+066 7.3 0+073 100 1006 S7 STD 820 BWP 0+073 7.3 0+081 100														
1007 S7 STD 820 BWP 0+081 7.3 0+088 100 1008 S7 STD 820 BWP 0+088 7.3 0+095 100 1009 S7 STD 820 BWP 0+088 7.3 0+095 100	1005	S7	STD	820	BWP	0+066	7.3	0+073	100					
1008 57 STD 820 BWP 0+088 7.3 0+095 100 1009 57 STD 820 BWP 0+095 7.3 0+102 100 1010 57 46 820 BWP 0+102 7.3 0+102 100 100 100 100 1011 57 450 BWP 0+107 7.3 0+110 100 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>E</td> <td></td>													E	
1010 S7 46 820 BWP 0+102 7.2 0+110 100 1011 S7 STD 820 BWP 0+110 7.3 0+117 100 1012 S7 STD 820 BWP 0+110 7.3 0+117 100 1011 S7 STD 820 BWP 0+117 7.3 0+124 100 1013 S7 47 820 BWP 0+124 7.3 0+124 100 1014 S7 48 820 BWP 0+129 7.3 0+131 B 1015 S7 STD 820 BWP 0+131 7.3 0+138 100	1008	S7		820	BWP	0+088	7.3	0+095	100					
1012 S7 STD 820 BWP 0+117 7.3 0+124 100 1013 S7 47 820 BWP 0+124 7.3 0+129 100 Image: Comparison of the temperature of te	1010	S7	46	820	BWP	0+102	7.2	0+110	100					
1013 S7 47 820 BWP 0+124 7.3 0+129 100 1014 S7 48 820 BWP 0+129 7.3 0+131 B 1015 S7 STD 820 BWP 0+131 7.3 0+138 100 Image: Control or control														
1014 S7 48 820 BWP 0+129 7.3 0+131 B 1015 S7 STD 820 BWP 0+131 7.3 0+138 100 Image: Control of the second sec														
1014 57 40 620 BWP 0+129 7.3 0+131 B 1015 S7 STD 820 BWP 0+131 7.3 0+138 100 indicates 7.3m STD.														2.0m-500mm OL in pipe laying schedules. Data
														indicates 7.3m STD.

						Pipe	Sections	that E	Electromagnetic xhibit Electromagnetic	Inspection Results Anomalies Consiste	nt with Broken \	Vire Wra	IDS
Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station	Pipe Length (metres)	High Station	Reported Class	Break Region Location (metres from Low Station)	Number of Broken Wire or Bar Wraps by Region	Total Number of Broken Wire or Bar Wraps	Layout	Comments
1017	S7	STD	820	BWP	0+145	7.3	0+153	100					
1018	S7	STD	820	BWP	0+153	7.3	0+160	100					
1019 1020	S7 S7	STD STD	820 820	BWP BWP	0+160 0+167	7.3 7.3	0+167 0+175	100 100					
1020	S7	STD	820	BWP	0+107	7.3	0+175	100					
1022	S7	STD	820	BWP	0+182	7.3	0+189	100					
1023	S7	STD	820	BWP	0+189	4.4	0+197	100					7.3m STD in pipe laying schedules. Data indicates
													4.4m SP. 7.3m STD in pipe laying schedules. Data indicates
1024	S7	STD	820	BWP	0+197	2.0	0+204	100				OL	2.0m-500mm OL.
1025	S7	STD	820	BWP	0+204	7.3	0+211	100					
1026 1027	S7 S7	STD 49	820 820	BWP BWP	0+211 0+219	7.3 5.5	0+219 0+224	100 100					
1027	S7	STD	820	BWP	0+219	7.3	0+231	100					
1029	S7	STD	820	BWP	0+231	7.3	0+239	100					
1030	S7	STD	820	BWP	0+239	7.3	0+246	100					
1031 1032	S7 S7	STD STD	820 820	BWP BWP	0+246 0+253	7.3	0+253 0+261	100 100					
1032	57 S7	STD	820	BWP	0+255	7.3	0+261	100					
1034	S7	STD	820	BWP	0+268	7.3	0+275	100					
1035	S7	STD	820	BWP	0+275	7.3	0+283	100					
1036 1037	S7 S7	STD	820	BWP BWP	0+283 0+290	7.3 7.3	0+290 0+297	100 100					
1037	57 S7	STD STD	820 820	BWP	0+290	7.3	0+297	100					
1039	S7	STD	820	BWP	0+305	7.3	0+312	100					
1040	S7	STD	820	BWP	0+312	7.3	0+319	100					
1041	S7	STD	820	BWP	0+319	7.3	0+327	100					
1042 1043	S7 S7	50 51	820 820	BWP BWP	0+327 0+327	0.7	0+327 0+332	100 100					
1044	S7	STD	820	BWP	0+332	7.3	0+340	100					
1045	S7	STD	820	BWP	0+340	7.3	0+347	100					
1046	S7	STD	820	BWP	0+347	7.3	0+354	100					
1047 1048	S7 S7	STD STD	820 820	BWP BWP	0+354 0+362	7.3 7.3	0+362 0+369	100 100					
1049	S7	STD	820	BWP	0+369	7.3	0+376	100					
1050	S7	STD	820	BWP	0+376	7.3	0+384	100					
1051	S7	STD	820	BWP	0+384	7.3	0+391	100					
1052 1053	S7 S7	STD STD	820 820	BWP BWP	0+391 0+398	7.3 7.3	0+398 0+406	100 100				-	
1055	S7	STD	820	BWP	0+406	7.3	0+413	100					
1055	S7	STD	820	BWP	0+413	7.3	0+420	100					
1056	S7	STD	820	BWP	0+420	7.3	0+428	100					
1057 1058	S7 S7	STD STD	820 820	BWP BWP	0+428 0+435	7.3 7.3	0+435 0+442	100 100					
1050	S7	STD	820	BWP	0+442	7.3	0+450	100					
1060	S7	STD	820	BWP	0+450	7.3	0+457	100					
1061	S7	STD	820	BWP	0+457	7.3	0+464	100					
1062 1063	S7 S7	STD STD	820 820	BWP BWP	0+464 0+472	7.3 7.3	0+472 0+479	100 100					
1064	S7	STD	820	BWP	0+479	7.3	0+486	100					
1065	S7	STD	820	BWP	0+486	7.3	0+493	100					
1066	S7	STD	820	BWP	0+493	7.3	0+501	100					
1067 1068	S7 S7	STD STD	820 820	BWP BWP	0+501 0+508	7.3 7.3	0+508 0+515	100 100				-	
1069	S7	STD	820	BWP	0+515	7.3	0+523	100					
1070	S7	STD	820	BWP	0+523	7.3	0+530	100					
1071	S7	STD	820	BWP	0+530	7.3	0+537	100					
1072 1073	S7 S7	52 53	820 820	BWP BWP	0+537 0+543	5.2 0.9	0+543 0+544	100 100					
1073	S7	STD	820	BWP	0+544	7.3	0+551	100					
1075	S7	STD	820	BWP	0+551	7.3	0+558	100					
1076	S7	STD	820	BWP	0+558	7.3	0+565	100					4 Em CD in aine lautre schedules. D. t. 1. M. t.
1077	S7	54	820	BWP	0+565	7.3	0+570	100					4.5m SP in pipe laying schedules. Data indicates 7.3m STD.
1078	S7	55	820	BWP	0+570	2.0	0+572	В				OL	500mm OL @ Station 0+571.
1079	S7	STD	820	BWP	0+572	7.3	0+579	100					
1080	S7	STD	820	BWP	0+579	7.3	0+587	100					Anomalous signal from 4.0.7.2.
1081 1082	S7 S7	STD STD	820 820	BWP BWP	0+587 0+594	7.3 7.3	0+594 0+601	100 100				A	Anomalous signal from 4.0-7.3m.
1083	S7	STD	820	BWP	0+601	7.3	0+609	100					
1084	S7	STD	820	BWP	0+609	7.3	0+616	100					
1085	S7	STD	820	BWP	0+616	5.7	0+623	100					7.3m STD in pipe laying schedules. Data indicates
1086	S7	STD	820	BWP	0+623	7.3	0+631	100					5.7m SP.
1080	S7	STD	820	BWP	0+631	7.3	0+638	100					
1088	S7	STD	820	BWP	0+638	7.3	0+645	100					
1089	S7	56	820	BWP	0+645	7.3	0+651	100					5.7m SP in pipe laying schedules. Data indicates
1090	S7	STD	820	BWP	0+000	7.3	0+007	100					7.3m STD. Equation: 0+650.870AH=0+000.000BK.
1090	S7	STD	820	BWP	0+000	7.3	0+015	100					
1092	S7	STD	820	BWP	0+015	7.3	0+022	100					
1093	S7	STD	820	BWP	0+022	7.3	0+029	100					
1094 1095	S7 S7	STD STD	820 820	BWP BWP	0+029 0+037	7.3 7.3	0+037 0+044	100 100					
1095	S7	STD	820	BWP	0+044	7.3	0+051	100					
1097	S7	STD	820	BWP	0+051	7.3	0+059	100					
1098	S7	STD	820	BWP	0+059	7.3	0+066	100					Anomalous signal from 2.0.7.2
1099	S7	STD	820	BWP	0+066	7.3	0+073	100				Α	Anomalous signal from 3.9-7.3m.

P P							Pipe	Sections	that E	Electromagnetic hibit Electromagnetic	Inspection Results Anomalies Consister	ent with Broken V	Vire Wra	aps
13.0 27 87.0 80 <th< th=""><th>Pure Reference Number</th><th>Contract Number</th><th>Piece Number</th><th>Diameter (millimetres)</th><th>Pipe Type</th><th>Low Station</th><th>Pipe Length (metres)</th><th>High Station</th><th>Reported Class</th><th>(metres from Low</th><th>Wire or Bar Wraps</th><th>Broken Wire or</th><th>Layout</th><th>Comments</th></th<>	Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station	Pipe Length (metres)	High Station	Reported Class	(metres from Low	Wire or Bar Wraps	Broken Wire or	Layout	Comments
130 27 370 40 wo 100 200 100		S7			BWP		7.3							
133 2 50 80 800														
1948 27 75 80 87 10.10 26 26 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
1016 27 70 80 807 0.110 2 0.110 2 0.110 2 0.110 2 0.110 2 0.110 2 0.110 2 0.110 2 0.110 2 0.110 2 0.110 10 0														
100 27 70 87 87 87 9.12 9.2 9.2 9.	1105	S7	STD	820	BWP	0+110	7.3	0+117	100					
100 27 80 807 6.12 7.3 81.0 80 80.7 81.0 80 80.7 81.0 80 80.7 81.0 80 80.7 81.0 80 80.7 81.0 80 80.7 81.0 80 80.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
100 27 70 80 80 9.10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
1111 57 580 400 <td>1109</td> <td></td> <td>STD</td> <td>820</td> <td></td> <td>0+139</td> <td>7.3</td> <td>0+146</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1109		STD	820		0+139	7.3	0+146						
1111 57 670 633 690 640 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
1111 25 36.0 uw uw 1-10 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
1111 25 37 36.0 300 400 <td>1113</td> <td>S7</td> <td>STD</td> <td>820</td> <td>BWP</td> <td>0+168</td> <td>7.3</td> <td>0+176</td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1113	S7	STD	820	BWP	0+168	7.3	0+176	100					
1111 5.7 5.0 9.0 9.0 9.1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
1111 57 57 58 80														
1111 57 57 58 870 680 680 680 680 870 680 680 680 870 680 680 680 680 680 680 680 680 680 680	1117		STD	820			7.3	0+205						
1110 25 57 80 <														
1111 27 57 58 87 6.2 7.5 0.2 7.5 0.2 7.5 0.2 7.5 0.2 7.5 0.2 7.5 0.2 7.5 0.2 7.5 0.2 7.5 0.2 7.5 0.2 7.5 0.2 7.5 0.2 7.5 0.2 0.2 7.5 0.2														
1212 97 870 860 987 970 870 <td>1121</td> <td>S7</td> <td>STD</td> <td>820</td> <td>BWP</td> <td>0+227</td> <td>7.3</td> <td>0+234</td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1121	S7	STD	820	BWP	0+227	7.3	0+234	100					
1124 57 570 680 890 9.72 6.256 1.00														
125 57 50 80 80P 90° 7.2 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120														
1121 57 570 580 897 670 820 897 670 820 897 670 820 897 670 820 897 670 820 897 670 820 897 670 820 897 670 820 897 670 820 897 670 820 897 670 820 897 670 820 897 670 820 897 670 820 897 670 820 897 670 820 897 673 73 633 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0+256</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						0+256								
1218 57 57 57 57 57 58 68 69 62 73 620 100 64 64 64 64 64 1131 57 57 580 600 600 63 630 100 64 64 64 64 1131 57 57 80 600 600 63 630 100 64 64 74 1131 57 57 80 600 600 63 630 100 64 64 74 1133 57 57 80 600 613 100 64 64 74 75 600 600 633 100 64 64 74 1133 57 57 80 600 613 100 64 64 74 75 75 600 600 633 100 64 64 64 75 75 600 600 632 73 630 63													A	Anomalous signal from 4.8-7.3m.
1130 57 570 820 840 9														
1313 57 570 800 WW 0-100 100														
1332 57 580 890 997 570 800 997 970 800 997 970 800 997 970 9														
1118 57 870 870 870 870 870 970 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0+307</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						0+307								
1138 37 370 800 807 902 2.0 97.50 100<	1133	S7	STD	820	BWP	0+315	7.3	0+322	100					
1318 57 58 80 0000 0000 0000 00000 000000 0000000 000000000000000000000000000000000000	1134	S7	STD	820	BWP	0+322	2.0	0+329	100					
1.13 37 30	1135	S7	STD	820	BWP	0+329	7.3	0+337	100					
1137 S7 S7 S80 WW 0.439 6.6 0.445 100 <t< td=""><td>1136</td><td>S7</td><td>55</td><td>820</td><td>BWP</td><td>0+337</td><td>7.3</td><td>0+339</td><td>100</td><td></td><td></td><td></td><td></td><td></td></t<>	1136	S7	55	820	BWP	0+337	7.3	0+339	100					
1138 57 570 820 8WP 6+335 7.3 6+30 100 <t< td=""><td>1137</td><td>S7</td><td>57</td><td>820</td><td>BWP</td><td>0+339</td><td>6.6</td><td>0+345</td><td>100</td><td></td><td></td><td></td><td></td><td>Indicates 7.3m STD.</td></t<>	1137	S7	57	820	BWP	0+339	6.6	0+345	100					Indicates 7.3m STD.
140 57 570 820 8WP 0+30 7.3 0+37 100	1138	S7	STD	820	BWP	0+345	7.3	0+353	100					
1141 57 ST0 820 BW0 0+37 7.3 0+325 100 Image: Constraint of the constraint of th														
1142 57 ST0 820 BWP 0+327 7.3 0+332 100 Image: Constraint of the constraint of t														
1144 S7 STD 820 BWP 0-139 7.3 0-140 0 0 0 1145 S7 STD 820 BWP 0-139 7.3 0-140 00 0 0 1147 S7 STD 820 BWP 0-141 2.0 0-141 100 0 0 0 1148 S7 STD 820 BWP 0-142 7.3 0+141 100 0 0 1149 S7 STD 820 BWP 0+142 7.3 0+142 100 0 0 0 1151 S7 STD 820 BWP 0+142 7.3 0+142 100 0														
1146 S7 S70 820 8WP 0-404 100 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
1144 S7 S70 820 8WP 0.411 2.0 0.419 0.0 0.					BWP				100					
1148 57 510 820 840 0 ************************************	1146	S7	STD	820	BWP	0+404	7.3	0+411	100					7.2m CTD in nine laving schedules. Data indicates
1149 57 570 820 8WP 0.443 7.3 0.443 7.0 1151 57 570 820 8WP 0.443 7.3 0.4448 100 1111 1111 1111 111	1147	S7	STD	820	BWP	0+411	2.0	0+419	100				OL	
1110 S7 S70 820 BWP 0.443 7.3 0.4449 100 1151 S7 S70 820 BWP 0.4449 7.3 0.4449 100 1152 S7 S70 820 BWP 0.4485 7.3 0.4452 100 1161 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
1111 S7 ST0 820 BWP 0+448 7.3 0+445 100 Image: Constraint of the constraint of t														
1113 57 STD 820 BWP 0+462 7.3 0+462 7.0 1155 57 STD 820 BWP 0+467 7.3 0+477 100 1155 57 STD 820 BWP 0+477 7.3 0+481 100 Image: Comparison of the compa														
11154 57 STD 820 BWP 0+470 7.3 0+470 100 Image: Constraint of the constraint of														
1155 S7 S70 820 BWP 0+477 100 A 0+477 100 A 1156 S7 S70 820 BWP 0+447 7.3 0+448 100 A <														
1157 S7 STD 820 BWP 0+494 7.3 0+499 100 1158 S7 STD 820 BWP 0+492 7.3 0+499 100 Image: Constraint of the c	1155	S7	STD	820	BWP	0+470	7.3	0+477	100					
1158 S7 STD 820 BWP 0-492 7.3 0+506 100 Image: Constraint of the state of														
1150 S7 STD 820 BWP 0.499 7.3 0.450 100 And 1160 S7 S1D 820 BWP 0.4517 7.3 0.4524 100 Anomalous signal from 0.0-2.8m. 1162 S7 STD 820 BWP 0.4517 7.3 0.4524 100 Anomalous signal from 0.0-2.8m. 1163 S7 STD 820 BWP 0.4517 7.3 0.4524 100 Anomalous signal from 0.0-2.8m. 1164 S7 STD 820 BWP 0.4527 7.3 0.4532 100 Anomalous signal from 0.0-2.8m. 1165 S7 STD 820 BWP 0.4537 7.3 0.4537 100 Anomalous signal from 4.2-7.3m. 1166 S7 STD 820 BWP 0.4568 7.3 0.4568 100 Anomalous signal from 0.0-2.8m. 1167 S7 STD 820 BWP 0.4568 7.3 0.4588 100 Anomalous signal from 0.0-2.8m. 1170 S7 STD 820 BWP 0.459<						0+492	7.3	0+499	100					
1161 57 58 820 BWP 0+517 7.3 0+524 100 <t< td=""><td>1159</td><td>S7</td><td>STD</td><td></td><td></td><td></td><td>7.3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1159	S7	STD				7.3							
1162 S7 STD 820 BWP 0+517 7.3 0+532 100 Image: Constraint of the constraint of t													A	Anomalous signal from 0.0-2.8m.
1164 S7 STD 820 BWP 0+532 7.3 0+546 100 A Anomalous signal from 4.2-7.3m. 1166 S7 STD 820 BWP 0+546 7.3 0+554 100 Image: Stress of Stres	1162	S7	STD	820	BWP	0+517	7.3	0+524	100					
1165 S7 STD 820 BWP 0+539 7.3 0+546 100 1166 S7 STD 820 BWP 0+554 100 100 100 1167 S7 STD 820 BWP 0+551 100 100 100 1168 S7 STD 820 BWP 0+561 7.3 0+568 100 100 100 1169 S7 STD 820 BWP 0+561 7.3 0+568 100 100 100 100 1170 S7 STD 820 BWP 0+558 7.3 0+593 100 100 100 100 1171 S7 STD 820 BWP 0+590 7.3 0+591 100														Anomalous signal from 4.2.7.2.
1166 57 STD 820 BWP 0+546 7.3 0+551 100 1167 ST STD 820 BWP 0+554 7.3 0+561 100 Image: Constraint of the state of													A	Anomalous signal from 4.2-7.3m.
1168 S7 STD 820 BWP 0+561 7.3 0+562 100 1169 S7 STD 820 BWP 0+568 7.3 0+576 100 100 100 1170 S7 STD 820 BWP 0+583 7.3 0+583 100 100 100 1171 S7 STD 820 BWP 0+583 7.3 0+593 100 100 100 1172 S7 STD 820 BWP 0+590 7.3 0+590 100 100 100 1173 S7 STD 820 BWP 0+590 7.3 0+692 100 100 100 1174 S7 STD 820 BWP 0+695 7.3 0+612 100 100 100 100 1175 S7 STD 820 BWP 0+612 7.3 0+621 100 100 100 100 1175 S7 STD 820 BWP 0+627 7.3 0+634 100	1166	S7	STD	820	BWP	0+546	7.3	0+554	100					
1169 S7 STD 820 BWP 0+568 7.3 0+576 100 1170 S7 STD 820 BWP 0+576 7.3 0+590 100 Image: Constraint of the state of													\vdash	
1171 S7 STD 820 BWP 0+583 7.3 0+590 100 1172 S7 STD 820 BWP 0+590 7.3 0+695 100 Image: Constraint of the c	1169					0+568		0+576						
1172 S7 STD 820 BWP 0+590 7.3 0+598 100 1173 S7 STD 820 BWP 0+695 100 Image: Constraint of the const														
1173 S7 STD 820 BWP 0+598 7.3 0+605 100 1174 S7 STD 820 BWP 0+605 7.3 0+612 100 Image: Constraint of the symbol of t														
1175 S7 STD 820 BWP 0+612 7.3 0+627 100 1176 S7 STD 820 BWP 0+627 7.3 0+627 100 Image: Constraint of the c	1173	S7	STD	820	BWP	0+598	7.3	0+605	100					
1176 S7 STD 820 BWP 0+620 7.3 0+634 100 1177 S7 STD 820 BWP 0+627 7.3 0+634 100 Image: Comparison of the c														
1177 S7 STD 820 BWP 0+627 7.3 0+634 100 1178 S7 STD 820 BWP 0+643 7.3 0+641 100 1179 S7 STD 820 BWP 0+649 7.3 0+649 100 1180 S7 STD 820 BWP 0+649 7.3 0+656 100 1181 S7 STD 820 BWP 0+649 7.3 0+651 100 Image: Comparison of the target tar														
1179 S7 STD 820 BWP 0+641 7.3 0+649 100 1180 S7 STD 820 BWP 0+649 7.3 0+656 100 1181 S7 STD 820 BWP 0+663 7.3 0+663 100 1182 S7 STD 820 BWP 0+663 7.3 0+671 100 1183 S7 STD 820 BWP 0+671 7.3 0+678 100	1177	S7	STD	820	BWP	0+627	7.3	0+634	100					
1180 S7 STD 820 BWP 0+649 7.3 0+656 100 1181 S7 STD 820 BWP 0+656 7.3 0+663 100 1182 S7 STD 820 BWP 0+663 7.3 0+671 100 1183 S7 STD 820 BWP 0+671 7.3 0+678 100														
1181 S7 STD 820 BWP 0+656 7.3 0+663 100 1182 S7 STD 820 BWP 0+663 7.3 0+671 100 1183 S7 STD 820 BWP 0+671 7.3 0+678 100														
1183 S7 STD 820 BWP 0+671 7.3 0+678 100	1181	S7	STD			0+656	7.3	0+663	100					

IBS S7 S1 1185 S7 S7 4 1186 S7 4 1187 S7 4 1189 S7 4 1189 S7 4 1190 S7 4 1191 S7 4 1192 S7 4 1193 S7 4 1194 S7 4 1195 S7 N 1196 S7 6 1197 S7 6 1198 S7 6 1200 S7 4 1201 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 4 1208 S7 4 1209 S7 4 1210 S7 4 1210 S7 4 121	La Grandia Contraction Contrac	a) a) b) <	BWP BWP BWP BWP BWP BWP BWP BWP BWP BWP	U U <thu< th=""> <thu< th=""> <thu< th=""> <thu< th=""></thu<></thu<></thu<></thu<>	tberg and a second seco	with the second secon	Series Constraints of the series of the seri	khibit Electromagnetic / Break Region Location (metres from Low Station)	Number of Broken Wire or Bar Wraps by Region	Total Number of Broken Wire or Bar Wraps		Comments
1186 S7 5 1187 S7 4 1188 S7 4 1189 S7 4 1190 S7 4 1191 S7 4 1192 S7 4 1192 S7 4 1193 S7 4 1194 S7 4 1195 S7 N 1196 S7 6 1197 S7 6 1198 S7 6 1200 S7 4 1201 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 4 1206 S7 4 1207 S7 4 1208 S7 4 1210 S7 4 1211 S7 4 1212 S	59 41	820 820	BWP BWP	0+693 0+707 0+717 0+715 0+729 0+729 0+737 0+744 0+751 N/A 0+759 0+765 0+765 0+768 0+775 0+768 0+775 0+002 0+002 0+0017 0+024 0+027 0+028 0+032	7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	0+700 0+707 0+715 0+729 0+729 0+737 0+744 0+751 0+759 N/A 0+765 0+768 0+775 0+002 0+009 0+017 0+017	100 100 100 100 100 100 100 100 N/A 100 100 100 100 100 100					4.0m SP. 6.4m SP in pipe laying schedules. Data indicates 5.0m SP.
1187 S7 4 1188 S7 4 1189 S7 4 1190 S7 4 1191 S7 4 1192 S7 4 1193 S7 4 1193 S7 4 1193 S7 4 1194 S7 4 1195 S7 N 1196 S7 6 1197 S7 6 1198 S7 6 1199 S7 6 1200 S7 4 1201 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 4 1207 S7 4 1208 S7 4 1210 S7 4 1211 S7 4 1212 S	41 41 41 41 41 41 41 41 41 41 60 61 62 63 41 41 41 62 63 63 41 41 41 41 41 41 41 41 41 41 41 41 41	820 820	BWP BWP	0+700 0+707 0+715 0+722 0+729 0+729 0+737 0+744 0+751 0+765 0+765 0+765 0+765 0+765 0+765 0+702 0+002 0+002 0+017 0+024 0+027 0+028 0+032	7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 4.0 5.0 2.5 7.5 4.0 4.0 7.3 3.1 1.2	0+707 0+715 0+722 0+729 0+737 0+744 0+751 0+759 N/A 0+765 0+765 0+765 0+702 0+002 0+009 0+017 0+024	100 100 100 100 100 100 100 100 100 100					4.0m SP. 6.4m SP in pipe laying schedules. Data indicates 5.0m SP.
1188 S7 4 1189 S7 4 1190 S7 4 1191 S7 4 1192 S7 4 1193 S7 4 1193 S7 4 1193 S7 4 1194 S7 4 1195 S7 K 1196 S7 6 1197 S7 6 1198 S7 6 1200 S7 4 1201 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 4 1207 S7 4 1208 S7 4 1210 S7 4 1211 S7 4 1212 S7 4 1213 S7 6 1214 S	41 41 41 41 41 41 41 41 41 41 60 61 63 41 41 41 65 66 66 41 41 41 41 41 41 41 41 41 41	820 820	BWP BWP	0+707 0+715 0+729 0+729 0+737 0+744 0+751 N/A 0+759 0+765 0+765 0+768 0+775 0+009 0+009 0+007 0+002 0+022 0+028 0+032	7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 4.0 5.0 2.5 7.5 4.0 4.0 7.3 3.1 1.2	0+715 0+722 0+729 0+737 0+744 0+751 0+759 N/A 0+765 0+765 0+705 0+002 0+002 0+009	100 100 100 100 100 100 100 100 100 100					4.0m SP. 6.4m SP in pipe laying schedules. Data indicates 5.0m SP.
1190 S7 4 1191 S7 4 1192 S7 4 1193 S7 4 1193 S7 4 1194 S7 4 1195 S7 N 1196 S7 6 1197 S7 6 1198 S7 6 1199 S7 6 1199 S7 6 1200 S7 4 1201 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 4 1205 S7 4 1207 S7 4 1208 S7 4 1210 S7 4 1211 S7 4 1212 S7 4 1213 S7 6 1214 S	41 41 41 41 41 60 61 62 63 41 41 64 65 66 41 41 41 41 41 41 41 41 41 41 41 41	820 820 820 820 820 820 820 820 820 820	BWP BWP BWP BWP BWP BWP BWP BWP BWP BWP	0+722 0+729 0+737 0+744 0+751 N/A 0+759 0+765 0+765 0+765 0+765 0+705 0+702 0+002 0+017 0+024 0+027 0+028 0+032	7.3 7.3 7.3 7.3 7.3 4.0 5.0 2.5 7.5 4.0 4.0 7.3 3.1 1.2	0+729 0+737 0+744 0+751 0+759 N/A 0+765 0+768 0+768 0+775 0+002 0+009 0+017	100 100 100 100 N/A 100 100 100 B 100 100					4.0m SP. 6.4m SP in pipe laying schedules. Data indicates 5.0m SP.
1191 S7 4 1192 S7 4 1193 S7 4 1194 S7 4 1195 S7 N 1196 S7 6 1197 S7 6 1198 S7 6 1199 S7 6 1199 S7 6 1200 S7 4 1201 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 6 1206 S7 4 1207 S7 4 1208 S7 4 1210 S7 4 1211 S7 6 1213 S7 7 1216 S7 4 1217 S7 6 1218 S7 7 1220 S	41 41 41 41 60 61 62 63 41 41 41 64 65 66 41 41 41 41 41 41 41 41 41 41	820 820 820 820 820 820 820 820 820 820	BWP BWP BWP BWP BWP BWP BWP BWP BWP BWP	0+729 0+737 0+744 0+751 N/A 0+759 0+765 0+768 0+775 0+002 0+002 0+002 0+017 0+024 0+027 0+028 0+032	7.3 7.3 7.3 4.0 5.0 2.5 7.5 4.0 4.0 7.3 3.1 1.2	0+737 0+744 0+751 0+759 N/A 0+765 0+768 0+768 0+775 0+002 0+009 0+017 0+024	100 100 100 N/A 100 100 100 B 100 100					4.0m SP. 6.4m SP in pipe laying schedules. Data indicates 5.0m SP.
1192 S7 4 1193 S7 4 1194 S7 4 1195 S7 N 1196 S7 6 1197 S7 6 1197 S7 6 1199 S7 6 1199 S7 6 1200 S7 4 1201 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 6 1206 S7 4 1208 S7 4 1208 S7 4 1210 S7 4 1210 S7 4 1210 S7 4 1210 S7 4 1211 S7 6 1214 S7 6 1215 S7 4 1216 S	41 41 41 N/A 60 61 62 63 41 41 41 41 41 41 41 41 41 41 41 41 41	820 820 820 820 820 820 820 820 820 820	BWP BWP BWP BWP BWP BWP BWP BWP BWP BWP	0+737 0+744 0+751 N/A 0+759 0+765 0+768 0+775 0+002 0+002 0+0017 0+024 0+027 0+028 0+032	7.3 7.3 7.3 4.0 5.0 2.5 7.5 4.0 4.0 7.3 3.1 1.2	0+744 0+751 0+759 N/A 0+765 0+768 0+775 0+002 0+009 0+017 0+024	100 100 N/A 100 100 100 B 100 100					4.0m SP. 6.4m SP in pipe laying schedules. Data indicates 5.0m SP.
1194 S7 4 1195 S7 N, 1196 S7 6 1197 S7 6 1198 S7 6 1199 S7 6 1200 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 6 1204 S7 6 1205 S7 6 1205 S7 6 1206 S7 4 1209 S7 4 1210 S7 4 1210 S7 4 1210 S7 4 1211 S7 6 1214 S7 6 1215 S7 4 1215 S7 7 1220 S7 6 1217 S7 6 1218	41 N/A 60 61 62 63 41 41 41 64 65 66 41 41 41 41 41 41 41 41 41 41 41	820 820	BWP BWP BWP BWP BWP BWP BWP BWP BWP BWP	0+751 N/A 0+759 0+765 0+768 0+775 0+002 0+009 0+017 0+024 0+027 0+028 0+032	7.3 4.0 5.0 2.5 7.5 4.0 4.0 7.3 3.1 1.2	0+759 N/A 0+765 0+768 0+775 0+002 0+009 0+017 0+024	100 N/A 100 100 B 100 100					4.0m SP. 6.4m SP in pipe laying schedules. Data indicates 5.0m SP.
1195 S7 N 1196 S7 6 1197 S7 6 1198 S7 6 1199 S7 6 1200 S7 4 1201 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 6 1204 S7 6 1205 S7 6 1206 S7 4 1208 S7 4 1208 S7 4 1210 S7 4 1210 S7 4 1210 S7 4 1210 S7 4 1211 S7 6 1214 S7 6 1215 S7 4 1216 S7 7 1220 S7 5 1221 S	N/A 60 61 62 63 41 41 41 64 65 66 41 41 41 41 41 41 41 41	820 820	BWP BWP BWP BWP BWP BWP BWP BWP BWP BWP	N/A 0+759 0+765 0+768 0+775 0+002 0+002 0+017 0+024 0+027 0+028 0+032	 4.0 5.0 2.5 7.5 4.0 4.0 7.3 3.1 1.2 	N/A 0+765 0+768 0+775 0+002 0+009 0+017 0+024	N/A 100 100 B 100 100					4.0m SP. 6.4m SP in pipe laying schedules. Data indicates 5.0m SP.
1196 S7 6 1197 S7 6 1199 S7 6 1199 S7 6 1199 S7 6 1200 S7 4 1201 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 6 1205 S7 6 1206 S7 4 1208 S7 4 1210 S7 4 1210 S7 4 1210 S7 4 1210 S7 4 1211 S7 4 1212 S7 4 1213 S7 6 1214 S7 6 1215 S7 4 1217 S7 6 1218 S7 7 1220 S	60 61 62 63 41 41 64 65 66 41 41 41 42	820 820 820 820 820 820 820 820 820 820	BWP BWP BWP BWP BWP BWP BWP BWP BWP BWP	0+759 0+765 0+768 0+775 0+002 0+002 0+007 0+027 0+024 0+027 0+028 0+032	5.0 2.5 7.5 4.0 4.0 7.3 3.1 1.2	0+765 0+775 0+002 0+009 0+017 0+024	100 100 B 100 100					6.4m SP in pipe laying schedules. Data indicates 5.0m SP.
1197 S7 6 1198 S7 6 1199 S7 6 1200 S7 4 1201 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 6 1204 S7 6 1205 S7 6 1205 S7 4 1205 S7 4 1207 S7 4 1208 S7 4 1209 S7 4 1210 S7 4 1210 S7 4 1211 S7 6 1214 S7 6 1215 S7 4 1210 S7 7 1213 S7 7 1220 S7 5 1223 S7 7 1224 S	61 62 63 41 41 64 65 66 41 41 41 41 62 63	820 820 820 820 820 820 820 820 820 820	BWP BWP BWP BWP BWP BWP BWP BWP BWP BWP	0+765 0+768 0+775 0+002 0+009 0+017 0+024 0+027 0+028 0+028 0+032	2.5 7.5 4.0 4.0 7.3 3.1 1.2	0+768 0+775 0+002 0+009 0+017 0+024	100 100 B 100 100					5.0m SP.
1198 S7 6 1199 S7 6 1200 S7 4 1201 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 6 1205 S7 6 1205 S7 6 1205 S7 4 1208 S7 4 1209 S7 4 1208 S7 4 1210 S7 4 1210 S7 4 1210 S7 4 1211 S7 4 1212 S7 4 1213 S7 6 1214 S7 6 1215 S7 4 1220 S7 7 1221 S7 5 1223 S7 7 1224 S	62 63 41 41 41 64 65 66 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41	820 820 820 820 820 820 820 820 820 820	BWP BWP BWP BWP BWP BWP BWP BWP BWP BWP	0+768 0+775 0+002 0+009 0+017 0+024 0+027 0+028 0+028 0+032	7.5 4.0 4.0 7.3 3.1 1.2	0+775 0+002 0+009 0+017 0+024	100 B 100 100					
1199 S7 6 1200 S7 4 1201 S7 4 1202 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 6 1206 S7 4 1207 S7 4 1208 S7 4 1209 S7 4 1210 S7 4 1211 S7 4 1212 S7 4 1213 S7 6 1214 S7 6 1215 S7 4 1215 S7 4 1217 S7 6 1218 S7 7 1220 S7 5 1223 S7 7 1224 S7 5 1225 S7 5 1226 S	63 41 41 41 64 65 66 41	820 820	BWP BWP BWP BWP BWP BWP BWP BWP BWP BWP	0+775 0+002 0+009 0+017 0+024 0+027 0+028 0+032	4.0 4.0 7.3 3.1 1.2	0+002 0+009 0+017 0+024	B 100 100					
1201 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 6 1205 S7 6 1205 S7 4 1205 S7 4 1206 S7 4 1209 S7 4 1210 S7 4 1210 S7 4 1212 S7 4 1213 S7 6 1214 S7 6 1215 S7 4 1215 S7 4 1216 S7 4 1217 S7 6 1218 S7 7 1220 S7 6 1221 S7 4 1222 S7 S1 1226 S7 S1 1228 S7 S1 1228 <t< td=""><td>41 41 64 65 66 41 41 41 41 41 41 41 41 41</td><td>820 820 820 820 820 820 820 820 820 820</td><td>BWP BWP BWP BWP BWP BWP BWP BWP BWP</td><td>0+009 0+017 0+024 0+027 0+028 0+028</td><td>7.3 3.1 1.2</td><td>0+017 0+024</td><td>100</td><td></td><td></td><td></td><td></td><td>Equation: 0+776.776AH=0+000.000BK.</td></t<>	41 41 64 65 66 41 41 41 41 41 41 41 41 41	820 820 820 820 820 820 820 820 820 820	BWP BWP BWP BWP BWP BWP BWP BWP BWP	0+009 0+017 0+024 0+027 0+028 0+028	7.3 3.1 1.2	0+017 0+024	100					Equation: 0+776.776AH=0+000.000BK.
1201 S7 4 1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 6 1205 S7 6 1205 S7 4 1205 S7 4 1206 S7 4 1209 S7 4 1210 S7 4 1210 S7 4 1212 S7 4 1213 S7 6 1214 S7 6 1215 S7 4 1215 S7 4 1216 S7 4 1217 S7 6 1218 S7 7 1220 S7 6 1221 S7 4 1222 S7 S1 1226 S7 S1 1228 S7 S1 1228 <t< td=""><td>41 41 64 65 66 41 41 41 41 41 41 41 41 41</td><td>820 820 820 820 820 820 820 820 820 820</td><td>BWP BWP BWP BWP BWP BWP BWP BWP BWP</td><td>0+009 0+017 0+024 0+027 0+028 0+028</td><td>7.3 3.1 1.2</td><td>0+017 0+024</td><td>100</td><td></td><td></td><td></td><td></td><td>7.3m STD in pipe laying schedules. Data indicates</td></t<>	41 41 64 65 66 41 41 41 41 41 41 41 41 41	820 820 820 820 820 820 820 820 820 820	BWP BWP BWP BWP BWP BWP BWP BWP BWP	0+009 0+017 0+024 0+027 0+028 0+028	7.3 3.1 1.2	0+017 0+024	100					7.3m STD in pipe laying schedules. Data indicates
1202 S7 4 1203 S7 6 1204 S7 6 1205 S7 6 1205 S7 6 1205 S7 4 1209 S7 4 1209 S7 4 1210 S7 4 1211 S7 4 1212 S7 4 1213 S7 6 1214 S7 6 1215 S7 4 1217 S7 6 1218 S7 7 1220 S7 6 1218 S7 7 1220 S7 6 1221 S7 5 1220 S7 5 1222 S7 5 1225 S7 5 1226 S7 5 1228 S7 5 1229 S	41 64 65 66 41 41 41 41 41 41 41 41	820 820 820 820 820 820 820 820 820 820 820 820 820 820 820 820 820 820 820	BWP BWP BWP BWP BWP BWP BWP BWP	0+017 0+024 0+027 0+028 0+032	3.1 1.2	0+024						4.0m SP.
1203 S7 6 1204 S7 6 1205 S7 6 1206 S7 4 1207 S7 4 1208 S7 4 1209 S7 4 1200 S7 4 1210 S7 4 1210 S7 4 1210 S7 4 1211 S7 4 1212 S7 4 1213 S7 6 1214 S7 6 1215 S7 4 1216 S7 4 1217 S7 6 1218 S7 7 1220 S7 5 1223 S7 7 1224 S7 5 1226 S7 5 1228 S7 5 1229 S7 7 1231 S	64 65 66 41 41 41 41 41 41 41 41 41	820 820 820 820 820 820 820 820 820 820	BWP BWP BWP BWP BWP BWP BWP BWP	0+024 0+027 0+028 0+032	1.2							7.3m STD in pipe laying schedules. Data indicates
1204 S7 6 1205 S7 6 1206 S7 4 1207 S7 4 1208 S7 4 1209 S7 4 1210 S7 4 1210 S7 4 1211 S7 4 1212 S7 4 1213 S7 6 1214 S7 6 1215 S7 4 1217 S7 6 1218 S7 7 1220 S7 6 1218 S7 7 1220 S7 5 1223 S7 7 1224 S7 5 1225 S7 5 1226 S7 5 1228 S7 7 1230 S7 7 1231 S7 5 1232 S	65 66 41 41 41 41 41 41 41 41 41	820 820 820 820 820 820 820 820 820 820	BWP BWP BWP BWP BWP BWP BWP	0+027 0+028 0+032		0+027						3.1m SP. 3.1m SP in pipe laying schedules. Data indicates
1205 S7 6 1206 S7 4 1208 S7 4 1209 S7 4 1209 S7 4 1209 S7 4 1210 S7 4 1211 S7 4 1212 S7 4 1213 S7 6 1214 S7 6 1215 S7 4 1216 S7 4 1217 S7 6 1218 S7 7 1220 S7 6 1221 S7 7 1220 S7 5 1222 S7 5 1223 S7 7 1225 S7 5 1226 S7 5 1228 S7 7 1230 S7 7 1231 S7 5 1232 S	66 41 41 41 41 41 41 41 41	820 820 820 820 820 820 820 820 820	BWP BWP BWP BWP BWP BWP	0+028 0+032	7.3		100					1.2m SP.
1206 S7 4 1207 S7 4 1208 S7 4 1200 S7 4 1210 S7 4 1210 S7 4 1211 S7 4 1212 S7 4 1213 S7 6 1214 S7 6 1215 S7 4 1216 S7 4 1217 S7 6 1218 S7 7 1220 S7 7 1221 S7 7 1222 S7 S5 1223 S7 7 1224 S7 S5 1225 S7 S5 1226 S7 S7 1228 S7 S7 1229 S7 7 1231 S7 S7 1232 S7 S7 1233	41 41 41 41 41 41 41 41	820 820 820 820 820 820 820	BWP BWP BWP BWP BWP	0+032		0+028	100					1.2m SP in pipe laying schedules. Data indicates
1206 S7 4 1207 S7 4 1208 S7 4 1200 S7 4 1210 S7 4 1210 S7 4 1211 S7 4 1212 S7 4 1213 S7 6 1214 S7 6 1215 S7 4 1216 S7 4 1217 S7 6 1218 S7 7 1220 S7 7 1221 S7 7 1222 S7 S5 1223 S7 7 1224 S7 S5 1225 S7 S5 1226 S7 S7 1228 S7 S7 1229 S7 7 1231 S7 S7 1232 S7 S7 1233	41 41 41 41 41 41 41 41	820 820 820 820 820 820 820	BWP BWP BWP BWP BWP	0+032	7 2							7.3m STD. 3.8m SP in pipe laying schedules. Data indicates
1207 S7 4 1208 S7 4 1209 S7 4 1210 S7 4 1211 S7 4 1212 S7 4 1213 S7 6 1214 S7 6 1215 S7 4 1216 S7 4 1217 S7 6 1218 S7 7 1219 S7 7 1220 S7 6 1221 S7 7 1220 S7 7 1223 S7 7 1224 S7 S1 1225 S7 S1 1226 S7 S1 1228 S7 7 1229 S7 7 1231 S7 S1 1232 S7 S1 1232 S7 S1 1232	41 41 41 41 41 41 41	820 820 820 820 820 820	BWP BWP BWP BWP		7.3	0+032	100					7.3m STD.
1208 \$77 4 1209 \$77 4 1210 \$77 4 1211 \$77 4 1212 \$77 4 1213 \$77 4 1213 \$77 4 1214 \$77 4 1215 \$77 4 1216 \$77 4 1217 \$77 6 1218 \$77 7 1220 \$77 6 1221 \$77 6 1221 \$77 6 1220 \$77 6 1221 \$77 6 1220 \$77 6 1221 \$77 5 1222 \$77 5 1223 \$77 5 1226 \$77 5 1230 \$77 5 1231 \$77 5 1232 \$77 5 <t< td=""><td>41 41 41 41 41 41</td><td>820 820 820 820</td><td>BWP BWP BWP</td><td></td><td>7.3 7.3</td><td>0+039 0+047</td><td>100 100</td><td></td><td></td><td></td><td></td><td>Casing begins @ Station 0+032. Cased pipe.</td></t<>	41 41 41 41 41 41	820 820 820 820	BWP BWP BWP		7.3 7.3	0+039 0+047	100 100					Casing begins @ Station 0+032. Cased pipe.
1210 S7 4 1211 S7 4 1212 S7 4 1213 S7 6 1214 S7 6 1215 S7 4 1216 S7 4 1217 S7 6 1218 S7 7 1219 S7 7 1220 S7 6 1221 S7 7 1220 S7 5 1223 S7 7 1224 S7 S5 1225 S7 S5 1226 S7 S5 1226 S7 S7 1228 S7 7 1229 S7 7 1231 S7 S7 1232 S7 S7 1233 S7 S7	41 41 41	820 820	BWP	0+047	7.3	0+054	100					Cased pipe.
1211 S7 4 1212 S7 4 1213 S7 6 1214 S7 6 1215 S7 4 1215 S7 4 1215 S7 4 1217 S7 6 1218 S7 7 1220 S7 6 1221 S7 4 1222 S7 5 1220 S7 6 1221 S7 4 1222 S7 5 1223 S7 7 1226 S7 S7 1228 S7 5 1228 S7 7 1230 S7 7 1231 S7 5 1232 S7 5 1232 S7 5 1232 S7 5 1233 S7 5 1234	41 41	820		0+054 0+061	7.3	0+061 0+068	100 100					Cased pipe.
1213 S7 6 1214 S7 6 1215 S7 4 1216 S7 4 1217 S7 6 1218 S7 7 1219 S7 7 1220 S7 6 1221 S7 7 1220 S7 5 1221 S7 7 1222 S7 S 1223 S7 7 1224 S7 S 1225 S7 S 1226 S7 S 1228 S7 7 1229 S7 7 1230 S7 S 1231 S7 S 1232 S7 S 1232 S7 S 1232 S7 S		820	BWP	0+061	7.3	0+076	100					Cased pipe.
1214 S7 6 1215 S7 4 1216 S7 4 1217 S7 6 1218 S7 7 1219 S7 7 1220 S7 6 1221 S7 7 1220 S7 5 1223 S7 7 1224 S7 S1 1225 S7 S1 1226 S7 S1 1228 S7 7 1229 S7 7 1230 S7 S1 1231 S7 S1 1232 S7 S1 1233 S7 S1	67		BWP	0+076	7.3	0+083	100					Casing ends @ Station 0+082.
1215 S7 4 1216 S7 4 1217 S7 6 1218 S7 7 1220 S7 6 1212 S7 7 1220 S7 6 1221 S7 7 1222 S7 5 1223 S7 7 1224 S7 S7 1225 S7 S7 1226 S7 S7 1228 S7 7 1229 S7 7 1230 S7 S7 1231 S7 S7 1232 S7 S7		820	BWP	0+083	7.3	0+087	100					3.8m SP in pipe laying schedules. Data indicates 7.3m cased STD.
1216 S7 4 1217 S7 6 1218 S7 7 1219 S7 7 1220 S7 6 1221 S7 7 1220 S7 6 1221 S7 7 1222 S7 51 1225 S7 51 1226 S7 51 1228 S7 7 1229 S7 7 1230 S7 51 1231 S7 51 1232 S7 51 1233 S7 51	68	820	BWP	0+087	1.2	0+088	В					EL in data.
1217 S7 6 1218 S7 7 1219 S7 7 1220 S7 6 1221 S7 57 1222 S7 S5 1223 S7 7 1224 S7 S5 1225 S7 S5 1226 S7 S7 1228 S7 7 1229 S7 7 1230 S7 7 1231 S7 S7 1232 S7 S1 1233 S7 S1 1233 S7 S1 1233 S7 S1	41	820	BWP	0+088	3.8	0+095	100					7.3m STD in pipe laying schedules. Data indicates 3.8m SP.
1218 S7 7 1219 S7 7 1220 S7 6 1221 S7 4 1222 S7 S1 1223 S7 S7 1224 S7 S1 1225 S7 S7 1226 S7 S1 1226 S7 S1 1227 S7 S1 1228 S7 S7 1220 S7 7 1228 S7 S1 1229 S7 S7 1220 S7 S1 1228 S7 S1 1229 S7 S7 1230 S7 S1 1232 S7 S1 1233 S7 S1	41	820	BWP	0+095	7.3	0+103	100					5.011 SF.
1219 S7 7 1220 S7 6 1221 S7 4 1222 S7 S1 1223 S7 7 1224 S7 S1 1225 S7 S1 1226 S7 S1 1226 S7 S1 1228 S7 S1 1229 S7 7 1231 S7 S1 1232 S7 S1 1233 S7 S1 1234 S7 S1 1233 S7 S1	69 70	820	BWP	0+103	2.2	0+105	100					
1220 S7 6 1221 S7 S7 1222 S7 S7 1223 S7 7 1224 S7 S7 1225 S7 S7 1226 S7 S7 1226 S7 S7 1228 S7 7 1229 S7 7 1230 S7 S7 1231 S7 S7 1232 S7 S7 1233 S7 S7	70	820 820	BWP BWP	0+105 0+107	2.0	0+107 0+108	B 100				OL	500mm OL @ Station 0+106.
1222 S7 S7 1223 S7 7 1224 S7 S7 1225 S7 S7 1226 S7 S7 1227 S7 S7 1228 S7 S7 1229 S7 7 1230 S7 7 1231 S7 S7 1232 S7 S7	68	820	BWP	0+108	1.2	0+109	В					
1223 S7 7 1224 S7 S7 1225 S7 S5 1226 S7 S5 1227 S7 S7 1228 S7 S7 1229 S7 7 1230 S7 7 1231 S7 S7 1233 S7 S7	44 STD	820 820	BWP BWP	0+109 0+117	7.3	0+117 0+123	100 100					
1225 S7 S1 1226 S7 S1 1227 S7 S1 1228 S7 S1 1229 S7 7 1230 S7 7 1231 S7 S1 1232 S7 S1 1233 S7 S1	72	820	BWP	0+123	6.7	0+131	100					
1226 S7 S1 1227 S7 S1 1228 S7 S1 1229 S7 7 1230 S7 7 1231 S7 S1 1232 S7 S1 1233 S7 S1	STD STD	820 820	BWP BWP	0+131 0+138	7.3	0+138 0+145	100 100					
1228 S7 S1 1229 S7 7 1230 S7 7 1231 S7 S1 1232 S7 S1 1233 S7 S1	STD	820	BWP	0+145	7.3	0+153	100					
1229 S7 7 1230 S7 7 1231 S7 S1 1232 S7 S1 1233 S7 S1	STD STD	820	BWP BWP	0+153 0+160	7.3	0+160 0+167	100 100					
1230 S7 7 1231 S7 S1 1232 S7 S1 1233 S7 S1	73	820 820	BWP	0+160	1.8	0+167	100					
1232 S7 S1 1233 S7 S1	74	820	BWP	0+169	1.2	0+170	В					
1233 S7 S1	STD STD	820 820	BWP BWP	0+170 0+178	7.3	0+178 0+185	100 100					
	STD	820	BWP	0+185	7.3	0+192	100					
	STD STD	820 820	BWP BWP	0+192	7.3	0+199 0+207	100 100					
1236 S7 S1	STD	820	BWP	0+207	7.3	0+214	100					
	STD STD	820 820	BWP BWP	0+214 0+221	7.3 7.3	0+221 0+229	100 100					
	STD	820	BWP	0+221	7.3	0+229	100					
1240 S7 ST	STD	820	BWP	0+236	7.3	0+243	100					
	STD	820	BWP	0+243	7.3	0+251	100					7.3m STD in pipe laying schedules. Data indicates
1242 S7 ST	STD	820	BWP	0+251	1.2	0+258	100					1.2m SP.
1243 S7 7	75	820	BWP	0+258	7.3	0+264	100					5.9m SP in pipe laying schedules. Data indicates 7.3m STD.
1244 S7 7	76	820	BWP	0+264	7.3	0+265	в					1.2m SP in pipe laying schedules. Data indicates
	STD	820	BWP	0+265	7.3	0+203	100					7.3m STD.
1246 S7 S1	STD	820	BWP	0+272	7.3	0+280	100					
	STD 77A	820 820	BWP BWP	0+280 0+287	7.3 6.1	0+287 0+293	100 100					
1249 S7 7		820	BWP	0+287	0.6	0+293 0+294	В					
	77	820	BWP	0+294	0.9	0+295	В					
1251 S6 N,	77	820	N/A	0+295	7.3	N/A	N/A					Pipe length reported with less certainty due to change in pipeline flow. Drawings and Pipe Manufacturing Details were not available for Contract
1252 S6 N,		•	N/A	N/A	7.3	N/A	N/A					S6. Pipe length reported with less certainty due to change in pipeline flow. Drawings and Pipe Manufacturing Details were not available for Contract S6.

						Pipe	Sections	that E	xhibit Electromagnetic	Anomalies Consiste	ent with Broken \	Nire Wrap	IS
Pure Reference Number	Contract Number	Piece Number	Diameter (millimetres)	Pipe Type	Low Station	Pipe Length (metres)	High Station	Reported Class	Break Region Location (metres from Low Station)	Number of Broken Wire or Bar Wraps by Region	Total Number of Broken Wire or Bar Wraps	Layout	Comments
1253	S6	N/A	820	N/A	N/A	7.3	N/A	N/A					Pipe length reported with less certainty due to change in pipeline flow. Drawings and Pipe Manufacturing Details were not available for Contract S6.
1254	S6	N/A	820	N/A	N/A	7.3	N/A	N/A					Pipe length reported with less certainty due to change in pipeline flow. Drawings and Pipe Manufacturing Details were not available for Contract S6.
1255	S6	N/A	820	N/A	N/A	7.3	N/A	N/A					Pipe length reported with less certainty due to change in pipeline flow. Drawings and Pipe Manufacturing Details were not available for Contract S6.
1256	S6	N/A	820	N/A	N/A	7.3	N/A	N/A					Pipe length reported with less certainty due to change in pipeline flow. Drawings and Pipe Manufacturing Details were not available for Contract S6.
1257	S6	N/A	820	N/A	N/A	2.0	N/A	N/A					Pipe length reported with less certainty due to change in pipeline flow. Drawings and Pipe Manufacturing Details were not available for Contract S6.
1258	S6	N/A	820	N/A	N/A	7.3	N/A	N/A					Pipe length reported with less certainty due to change in pipeline flow. Drawings and Pipe Manufacturing Details were not available for Contract S6.
	Extraction: Towards the Comox Valley Water Pollution Control Centre												